留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋风-喷射鼓泡塔的结构特征与性能分析

肖育军 李彩亭 李珊红 邹毅辉

肖育军, 李彩亭, 李珊红, 邹毅辉. 旋风-喷射鼓泡塔的结构特征与性能分析[J]. 环境工程技术学报, 2019, 9(2): 126-132. doi: 10.12153/j.issn.1674-991X.2018.12.200
引用本文: 肖育军, 李彩亭, 李珊红, 邹毅辉. 旋风-喷射鼓泡塔的结构特征与性能分析[J]. 环境工程技术学报, 2019, 9(2): 126-132. doi: 10.12153/j.issn.1674-991X.2018.12.200
XIAO Yujun, LI Caiting, LI Shanhong, ZOU Yihui. Structure characteristics and performance analysis of a novel cyclone-jet bubbling tower[J]. Journal of Environmental Engineering Technology, 2019, 9(2): 126-132. doi: 10.12153/j.issn.1674-991X.2018.12.200
Citation: XIAO Yujun, LI Caiting, LI Shanhong, ZOU Yihui. Structure characteristics and performance analysis of a novel cyclone-jet bubbling tower[J]. Journal of Environmental Engineering Technology, 2019, 9(2): 126-132. doi: 10.12153/j.issn.1674-991X.2018.12.200

旋风-喷射鼓泡塔的结构特征与性能分析

doi: 10.12153/j.issn.1674-991X.2018.12.200
详细信息
    作者简介:

    肖育军(1987—),男,工程师,主要研究方向为大气污染预防与治理, xiaoyujun712@163.com

  • 中图分类号: X701

Structure characteristics and performance analysis of a novel cyclone-jet bubbling tower

  • 摘要: 针对传统鼓泡塔不能处理含尘量大烟气的缺陷,运用喷射鼓泡工艺与旋风除尘器的原理与优势设计了新型鼓泡塔——旋风-喷射鼓泡塔,利用CFD(computational fluid dynamics)技术对其气相分布特性、气固分离性能、除雾器效率进行了分析,并依据受力平衡得出除雾环设计的积分方程。结果表明:蜗壳切入式入口使入口舱区域烟气实现均匀性分布,气固两相在外筒中实现分离,对5~100 μm与1~10 μm粒径粉尘的去除率分别为99.43%和53.70%;加环旋流板除雾器使雾滴去除率从98.39%提升至99.08%,雾滴分离的临界粒径从0.047 mm降至0.021 mm,雾滴临界粒径范围内,加环旋流板除雾器的雾滴去除率为96.20%。

     

  • [1] 环境保护部. 2014中国环境状况公报[A]. 北京:环境保护部, 2015.
    [2] 环境保护部. 火电厂大气污染物排放标准:GB 13223—2011 [S].北京:中国环境科学出版社, 2011.
    [3] 李元, 杨志忠 . 湿法烟气脱硫关键影响因素及新型单塔双循环技术[J]. 环境工程, 2016,34(1):69-73.

    LI Y, YANG Z Z . Influence of key factors on lime-gypsum wet flue gas desulfurization and two circulation per tower technology[J]. Environmental Engineering, 2016,34(1):69-73.
    [4] 赵磊, 周洪光 . 烟气调质技术在近零排放机组中的研究与应用[J]. 环境工程, 2016,34(2):83-86.

    ZHAO L, ZHOU H G . Resarch and application of flue gas conditioning technology in near-zero emisson of coal-fired power plant[J]. Environmental Engineering, 2016,34(2):83-86.
    [5] 刘定平, 张亚曦, 周俊 . 旋流雾化脱硫塔除尘效果试验研究[J]. 环境工程, 2017,35(2):68-71.

    LIU D P, ZHANG Y X, ZHOU J . Experimental research on effects of dedusting in swirl atomizing desulfurization tower[J]. Environmental Engineering, 2017,35(2):68-71.
    [6] 丁红蕾, 苏秋凤, 张涌新 , 等. 湿式氨法烟气脱硫工艺影响因素的试验研究[J]. 热力发电, 2014,43(1):96-98.

    DING H L, SU Q F, ZHANG Y X , et al. Experimental study on factors affecting the ammonia-based WFGD process[J]. Thermal Power Generation, 2014,43(1):96-98.
    [7] 钟秦, 黄俊, 王婷茹 , 等. 喷射鼓泡烟气脱硫:Ⅰ.化学吸收工艺的研究[J]. 南京理工大学学报, 1997,21(5):419-422.

    ZHONG Q, HUANG J, WANG T R , et al. Jet bubbling flue gas desulfurization:Ⅰ.a study of chemical absorption technology[J]. Journal of Nanjing University of Science and Technology, 1997,21(5):419-422.
    [8] 林彬, 宋建珂, 郭斌 , 等. 喷射鼓泡塔烟气脱硫在600 MW机组上的运行特性[J]. 热力发电, 2006,35(3):33-35.

    LIN B, SONG J K, GUO B , et al. Operational performance of the flue gas desulfuration system with spray bubbling tower on 600 MW unit[J]. Thermal Power Generation, 2006,35(3):33-35.
    [9] 高桥照男, 宫原敏郎 . 鼓泡塔的设计技术现状及其要点[J].化学工程, 1987(6):67-74.
    [10] ZHENG Y, KIIL S, JOHNSSON J E . Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation[J]. Chemical Engineering Science, 2003,58(20):4695-4703.
    doi: 10.1016/j.ces.2003.07.002
    [11] 何萍 . 喷淋塔和鼓泡塔式湿法脱硫的工艺比较[J]. 江西电力, 2004,30(5):1-3.
    doi: 10.3969/j.issn.1006-348X.2004.05.001
    [12] 孙锦余, 陈亮 . 喷淋塔、鼓泡塔烟气脱硫技术的比较[J]. 广东电力, 2009,22(11):51-53.

    SUN J Y, CHEN L . Comparison between spray tower and jet bubbling reactor flue gas desulfurization techniques[J]. Guangdong Electric Power, 2009,22(11):51-53.
    [13] 吴婷, 杨春平, 甘海明 , 等. 气动搅拌喷射鼓泡脱硫除尘吸收塔[J]. 环境工程, 2008,26(2):10-12.

    WU T, YANG C P, GAN H M , et al. Jet bubbling tower with pneumatic agitation for desulfurization and dust removal[J]. Environment Engineering, 2008,26(2):10-12.
    [14] 钟秦, 王婷茹, 刘永奎 , 等. 喷射鼓泡烟气脱硫:Ⅱ.在工业锅炉上的应用[J]. 南京理工大学学报, 1997,21(5):423-427.

    ZHONG Q, WANG T R, LIU Y K , et al. Jet bubbling flue gas desulfurization: Ⅱ.the application in the industrial boilers[J]. Journal of Nanjing University of Science and Technology, 1997,21(5):423-427.
    [15] ZHANG Y J, KILL S, JOHNSSON J E . Experimental investigation of a pilot-scale jet bubbling ractor for wet flue gas desulphuisation[J]. Chemical Engineering Science, 2003,58:4695-4703.
    [16] 仲兆平, 金保升, 兰计香 , 等. 鼓泡式烟气脱硫原理性试验台气体流动冷模试验[J]. 热能动力工程, 2003,18(6):592-596.

    ZHONG Z P, JIN B S, LAN J X , et al. Cold model tests of gas-liquid flows in a wet bubbling flue-gas desulfurization text rig[J]. Journal of Engineering for Thermal Energy and Power, 2003,18(6):592-596.
    [17] 李彩亭, 肖育军, 李珊红 . 一种加环旋流板除雾器:ZL201510801870.3[P]. 2017 -05-10.
    [18] GULAWANI S S, DESHPANDE S S, JOSHI J B . Submerged gas jet into a liquid bath:a review[J]. Industrial & Engineering Chemistry Reaearch, 2007,46:3188-3218.
    doi: 10.1021/ie0608511
    [19] ZHENG Y J, KIIL S, JOHNSSON J E . Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurization[J]. Chemical Engineering Science, 2003,58:4695-4703.
    doi: 10.1016/j.ces.2003.07.002
    [20] 王福军 . 计算流体力学分析:CFD软件原理与运用[M]. 北京: 清华大学出版社, 2004.
    [21] MAROCCO L . Modeling of the fluid dynamics and SO2 absorption in a gas-liquid reactor[J]. Chemical Engineering Journal, 2010,162:217-226.
    doi: 10.1016/j.cej.2010.05.033
    [22] FENG J, HOU X C, CHEN X H , et al. Thermochemical process study on a jet-fluidized-bed gasifier reaction system by an equivalent chemical reactor network[J]. Energy Fuels, 2011,25:4063-4069.
    doi: 10.1021/ef200979x
    [23] 潘栋 . 大型喷射鼓泡塔脱硫装置的运行特性研究[J]. 热力发电, 2011,40(6):100-102.

    PAN D . Study on operation behavior of FGD system with JET bubbling tower[J]. Thermal Power Generation, 2011,40(6):100-102.
    [24] WANG B, XU D L, CHU K W , et al. Numerical study of gas-solid flow in a cyclone separator[J]. Applied Mathematics and Modeling, 2006,30:1326-1342.
    doi: 10.1016/j.apm.2006.03.011
  • 加载中
计量
  • 文章访问数:  551
  • HTML全文浏览量:  54
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 刊出日期:  2019-03-20

目录

    /

    返回文章
    返回