Volume 8 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
QIN Yadi, WANG Shujuan, ZHUO Yuqun. Progress in catalytic oxidation of elemental mercury by modified SCR catalysts[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 539-545. doi: 10.3969/j.issn.1674-991X.2018.05.071
Citation: QIN Yadi, WANG Shujuan, ZHUO Yuqun. Progress in catalytic oxidation of elemental mercury by modified SCR catalysts[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 539-545. doi: 10.3969/j.issn.1674-991X.2018.05.071

Progress in catalytic oxidation of elemental mercury by modified SCR catalysts

doi: 10.3969/j.issn.1674-991X.2018.05.071
  • Received Date: 2018-04-20
  • Publish Date: 2018-09-20
  • Targeting the oxidation of elemental mercury (Hg 0) in the flue gas from coal-fired power plant, the research progress of the catalytic oxidation by modified selected catalytic reduction (SCR) catalysts for elemental mercury was reviewed, focusing on the influence of metal oxides or chlorides doped SCR catalysts on elemental mercury oxidation. The activity of modified SCR catalysts for elemental mercury was explored from the effects of dopant, doping ratio, flue gas components and temperature. In addition, the heterogeneous reaction mechanisms between elemental mercury and the modified SCR catalysts were analyzed synthetically with respects to doping elements and flue gas conditions. Finally, considering the current situation of coal-fired plants, the prospects of future studies on modified SCR catalyst and the relevant experimental methods were proposed.

     

  • loading
  • [1]
    郑刘根 . 煤中汞的环境地球化学研究[D]. 合肥:中国科学技术大学, 2008.

    ZHENG L G . Environmental geochemistry of mercury in coal[D]. Hefei:University of Science and Technology of China, 2008.
    [2]
    WU Q, WANG S, LI G , et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science & Technology, 2016,50(24):13428-13435.
    doi: 10.1021/acs.est.6b04308 pmid: 27993067
    [3]
    YING H, DENG M, LI T , et al. Anthropogenic mercury emissions from 1980 to 2012 in China[J]. Environmental Pollution, 2017,226:230-239.
    doi: 10.1016/j.envpol.2017.03.059
    [4]
    环境保护部, 国家质量监督检验检疫总局 .火电厂大气污染物排放标准:GB 13223—2011[S∕OL].( 2017 -09-09)[2018-03-19]..
    [5]
    张胜军, 许明海, 王莉 , 等. 燃煤锅炉脱汞技术研究进展[J].环境污染与防治, 2014(7):74-79.

    ZHANG S J, XU M H, WANG L , et al. Research progress of mercury removal technology for coal-fired boiler[J].Environmental Pollution & Control, 2014(7):74-79.
    [6]
    STAUDT J E . Control technologies to reduce conventional and hazardous air pollutants from coal-fired power plants[R∕OL].( 2011-03-30)[2018-03-19].. 2011.
    [7]
    李小健 . 燃煤锅炉烟气脱汞技术的研究与进展[J]. 应用能源技术, 2017(5):28-32.

    LI X J . Current advances of mercury removal technology from flue gas in coal-fired boiler[J] .Applied Energy Technology, 2017(5):28-32.
    [8]
    PAVLISH J H, SONDREAL E A, MANN M D , et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003,82(2∕3):89-165.
    doi: 10.1016/S0378-3820(03)00059-6
    [9]
    殷立宝, 禚玉群, 徐齐胜 , 等. 中国燃煤电厂汞排放规律[J]. 中国电机工程学报, 2013,33(29):1-10.

    YIN L B, ZHUO Y Q, XU Q S , et al. Mercury emission from coal-fired power plants in China[J]. Proceedings of the CSEE, 2013,33(29):1-10.
    [10]
    KAMATA H, UENO S, SATO N , et al. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas[J]. Fuel Processing Technology, 2009,90(7∕8):947-951.
    doi: 10.1016/j.fuproc.2009.04.010
    [11]
    FAN X, LI C, ZENG G , et al. Hg 0 removal from simulated flue gas over CeO2∕HZSM-5 [J]. Energy & Fuels, 2012,26(4):2082-2089.
    doi: 10.1021/ef201739p
    [12]
    HRDLICKA J A, SEAMES W S, MANN M D , et al. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environmental Science & Technology, 2008,42(17):6677-6682.
    doi: 10.1021/es8001844 pmid: 18800548
    [13]
    SEAMES W, MANN M, MUGGLI D , et al. Mercury oxidation via catalytic barrier filters phase Ⅱ[R]. Grand Forks:University of North Dakota, 2007.
    [14]
    GALE T K, LANI B W, OFFEN G R . Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Processing Technology, 2008,89(2):139-151.
    doi: 10.1016/j.fuproc.2007.08.004
    [15]
    GHORISHI S B, LEE C W, JOZEWICZ W S , et al. Effects of fly ash transition metal content and flue gas HCl∕SO2 ratio on mercury speciation in waste combustion[J]. Environmental Engineering Science, 2005,22(2):221-231.
    [16]
    DUNHAM G E, DEWALL R A, SENIOR C L . Fixed-bed studies of the interactions between mercury and coal combustion fly ash[J]. Fuel Processing Technology, 2003,82(2∕3):197-213.
    doi: 10.1016/S0378-3820(03)00070-5
    [17]
    XU W, WANG H, ZHU T , et al. Mercury removal from coal combustion flue gas by modified fly ash[J]. Journal of Environmental Sciences, 2013,25(2):393-398.
    doi: 10.1016/S1001-0742(12)60065-5 pmid: 23596961
    [18]
    WANG S, ZHANG Y, GU Y , et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016,181:1230-1237.
    doi: 10.1016/j.fuel.2016.02.043
    [19]
    LIVENGOOD C D, MENDELSOHN M H, HUANG H S , et al. Development of mercury control techniques for utility boilers[R]. Illinois:Argonne National Lab, 1995.
    [20]
    叶群峰, 王成云, 徐新华 , 等. 高锰酸钾吸收气态汞的传质-反应研究[J]. 浙江大学学报(工学版), 2007,41(5):831-835.

    YE Q F, WANG C Y, XU X H , et al. Mass transfer-reaction of Hg 0 absorption in potassium permanganate [J]. Journal of Zhejiang University(Engineering Science), 2007,41(5):831-835.
    [21]
    KO K B, BYUN Y, CHO M , et al. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process[J]. Chemosphere, 2008,71(9):1674-1682.
    doi: 10.1016/j.chemosphere.2008.01.015 pmid: 18313101
    [22]
    PITONIAK E, WU C Y, LONDEREE D , et al. Nanostructured silica-gel doped with TiO2 for mercury vapor control[J]. Journal of Nanoparticle Research, 2003,5(3∕4):281-292.
    doi: 10.1023/A:1025582731470
    [23]
    PUDASAINEE D, LEE S J, LEE S , et al. Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants[J]. Fuel, 2010,89(4):804-809.
    doi: 10.1016/j.fuel.2009.06.022
    [24]
    KAMATA H, UENO S, NAITO T , et al. Mercury oxidation over the V2O5(WO3)∕TiO2 commercial SCR catalyst[J]. Industrial & Engineering Chemistry Research, 2008,47(21):8136-8141.
    doi: 10.1021/ie800363g
    [25]
    马步宇, 黄文君, 瞿赞 , 等. 过渡金属元素掺杂改性SCR对零价汞的催化氧化性能[J]. 环境科学研究, 2016,29(3):397-403.

    MA B Y, HUANG W J, QU Z , et al. Catalytic oxidation performance of SCR doped with transition metal elements for removal of elemental mercury[J]. Research of Environmental Sciences, 2016,29(3):397-403.
    [26]
    陈杰, 晏乃强, 瞿赞 , 等. 强化SCR脱硝催化剂转化零价汞的初步研究[J]. 环境科学与技术, 2013,36(5):86-88.

    CHEN J, YAN N Q, QU Z , et al. Preliminary study on mercury conversion performance of modified SCR catalyst[J]. Environmental Science & Technology, 2013,36(5):86-88.
    [27]
    赵莉, 何青松, 李琳 , 等. 改性SCR催化剂对Hg 0催化氧化性能的研究 [J]. 燃料化学学报, 2015,43(5):628-634.

    ZHAO L, HE Q S, LI L , et al. Research on the catalytic oxidation of Hg 0 by modified SCR catalysts [J]. Journal of Fuel Chemistry and Technology, 2015,43(5):628-634.
    [28]
    ZHAO L, LI C, ZHANG J , et al. Promotional effect of CeO2 modified support on V2O5-WO3∕TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015,153:361-369.
    doi: 10.1016/j.fuel.2015.03.001
    [29]
    CHI G, SHEN B, YU R , et al. Simultaneous removal of NO and Hg 0 over Ce-Cu modified V2O5∕TiO2 based commercial SCR catalysts [J]. Journal of Hazardous Materials, 2017,330:83-92.
    doi: 10.1016/j.jhazmat.2017.02.013 pmid: 28212513
    [30]
    YAN N, CHEN W, CHEN J , et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environmental Science & Technology, 2011,45(13):5725-5730.
    doi: 10.1021/es200223x pmid: 21662986
    [31]
    ZHAO S, XU H, MEI J , et al. Ag-Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range[J]. Fuel, 2017,200:236-243.
    [32]
    WANG H, WANG B, SUN Q , et al. New insights into the promotional effects of Cu and Fe over V2O5-WO3∕TiO2 NH3-SCR catalysts towards oxidation of Hg 0 [J]. Catalysis Communications, 2017,100:169-172.
    doi: 10.1016/j.catcom.2017.06.036
    [33]
    HUANG W, XU H, QU Z , et al. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas[J]. Fuel Processing Technology, 2016,149:23-28.
    doi: 10.1016/j.fuproc.2016.04.007
    [34]
    REDDY B M, KHAN A, YAMADA Y , et al. Structural characterization of CeO2-TiO2 and V2O5∕CeO2-TiO2 catalysts by Raman and XPS techniques[J]. Journal of Physical Chemistry B, 2003,107(22):5162-5167.
    doi: 10.1021/jp0344601
    [35]
    池桂龙, 沈伯雄, 朱少文 , 等. 改性SCR催化剂对单质汞氧化性能的研究[J]. 燃料化学学报, 2016,44(6):763-768.

    CHI G L, SHEN B X, ZHU S W , et al. Oxidation of elemental mercury over modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2016,44(6):763-768.
    [36]
    LI H, WU C, LI Y , et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011,45(17):7394-7400.
    doi: 10.1021/es2007808 pmid: 21770402
    [37]
    XU W, HE H, YU Y . Deactivation of a Ce∕TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. Journal of Physical Chemistry C, 2009,113(11):4426-4432.
    doi: 10.1021/jp8088148
    [38]
    GAO X, JIANG Y, ZHONG Y , et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2010,174(1∕2∕3):734-739.
    doi: 10.1016/j.jhazmat.2009.09.112 pmid: 19837510
    [39]
    LI H, WU C, LI Y , et al. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. Journal of Hazardous Materials, 2012,243:117-123.
    doi: 10.1016/j.jhazmat.2012.10.007 pmid: 23131500
    [40]
    WANG F, SHEN B, GAO L , et al. Simultaneous removal of NO and Hg 0 from oxy-fuel combustion flue gas over CeO2-modified low-V2O5-based catalysts [J]. Fuel Processing Technology, 2017,168:131-139.
    doi: 10.1016/j.fuproc.2017.08.024
    [41]
    ZHAO L, LI C, LI S , et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5∕ZrO2-CeO2 catalyst[J]. Applied Catalysis B:Environmental, 2016,198:420-430.
    doi: 10.1016/j.apcatb.2016.05.079
    [42]
    ZHOU J, HOU W, QI P , et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J]. Environmental Science & Technology, 2013,47(17):10056-10062.
    doi: 10.1021/es401681y pmid: 23931010
    [43]
    LI H, WU C, LI Y , et al. Superior activity of MnOx-CeO2∕TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B:Environmental, 2012,111:381-388.
    doi: 10.1016/j.apcatb.2011.10.021
    [44]
    胡长兴, 周劲松, 何胜 , 等. SCR氮氧化物脱除系统对燃煤烟气汞形态的影响[J]. 热能动力工程, 2009,24(4):499-502.

    HU C X, ZHOU J S, HE S , et al. Influence of the SCR (selective catalytic reduction)-based NOx removal system on mercury morphology in coal-fired flue gas[J]. Journal of Engineering for Thermal Energy and Power, 2009,24(4):499-502.
    [45]
    EOM Y, JEON S H, NGO T A , et al. Heterogeneous mercury reaction on a selective catalytic reduction(SCR) catalyst[J]. Catalysis Letters, 2008,121(3∕4):219-225.
    doi: 10.1007/s10562-007-9317-0
    [46]
    PRESTO A A, GRANITE E J . Survey of catalysts for oxidation of mercury in flue gas[J]. Environmental Science & Technology, 2006,40(18):5601-5609.
    doi: 10.1021/es060504i pmid: 17007115
    [47]
    KAMATA H, UENO S, NAITO T , et al. Mercury oxidation by hydrochloric acid over a VOx∕TiO2 catalyst[J]. Catalysis Communications, 2008,9(14):2441-2444.
    doi: 10.1016/j.catcom.2008.06.010
    [48]
    姜英 . 我国煤中氯的分布及其分级标准[J].煤质技术, 1998(5):7-8.
    [49]
    睢辉, 张梦泽, 董勇 , 等. CaCl2改性选择性催化还原催化剂氧化汞的实验与机理研究[J]. 中国电机工程学报, 2014,34(26):4469-4475.

    SUI H, ZHANG M Z, DONG Y , et al. Experimental and mechanism study on mercury oxidation by selective catalytic reduction catalyst modified by calcium chloride[J]. Proceedings of the CSEE, 2014,34(26):4469-4475.
    [50]
    程广文, 张强, 白博峰 . 一种改性选择性催化还原催化剂及其对零价汞的催化氧化性能[J]. 中国电机工程学报, 2015,35(3):623-630.

    CHENG G W, ZHANG Q, BAI B F . A modified selective catalytic reduction catalyst and its catalytic oxidation for Hg 0 [J]. Proceedings of the CSEE, 2015,35(3):623-630.
    [51]
    杜雯, 禚玉群, 张亮 , 等. 过渡金属卤化物改性非碳基吸附剂脱汞研究[J]. 工程热物理学报, 2011,32(7):1236-1240.

    DU W, ZHUO Y Q, ZHANG L , et al. Experimental study on mercury efficiencies transient metal halides impregnated non-carbon sorbents[J]. Journal of Engineering Thermophysics, 2011,32(7):1236-1240.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(653) PDF Downloads(437) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return