Volume 7 Issue 3
May  2017
Turn off MathJax
Article Contents
XU Jianfeng, WANG Lei, XIONG Ying, XI Beidou, ZHANG Lieyu, MAO Xuhui, YANG Tianxue, WU Minghong, LI Tongtong. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil[J]. Journal of Environmental Engineering Technology, 2017, 7(3): 366-373. doi: 10.3969/j.issn.1674-991X.2017.03.051
Citation: XU Jianfeng, WANG Lei, XIONG Ying, XI Beidou, ZHANG Lieyu, MAO Xuhui, YANG Tianxue, WU Minghong, LI Tongtong. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil[J]. Journal of Environmental Engineering Technology, 2017, 7(3): 366-373. doi: 10.3969/j.issn.1674-991X.2017.03.051

Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil

doi: 10.3969/j.issn.1674-991X.2017.03.051
More Information
  • Corresponding author: Lei WANG E-mail: wangleicraes@163.com
  • Received Date: 2016-10-09
  • Publish Date: 2017-05-20
  • The traditional remediation technologies of the soil contaminated heavy metals were mainly physical, chemical and biological. The phytoremediation technologies are reliable biological technologies for removing the heavy metal pollution in soil in recent years and become the frontier and hot research areas of resource, environmental and biological sciences internationally. Due to their low cost, wide adaptability and no secondary pollution, the phytoremediation technologies have been widely studied. To screen out or breed suitable plant species which can tolerate and accumulate multiple metals, with fast growth and wide adaptation is of most importance for phytoremediation. The current remediation technologies of heavy metals in soil were summarized. In view of the restriction problems of phytoremediation of heavy metals in soil, the research progress of strengthening phytoremediation technologies were reviewed. The physical, chemical, and biotechnology methods for increasing the plant biomass and heavy metal accumulation were discussed, focusing on the mechanism and application effects of genetic engineering technology, chelate induced technology, root exudates and arbuscular mycorrhizae strengthening phytoremediation, and prospecting future research directions.


  • loading
  • [1]
    MARQUES A P G C, RANGEL A O S S, CASTRO P M L . Remediation of heavy metal contaminated soils:an overview of site remediation techniques[J]. Critical Reviews in Environmental Science and Technology, 2011,41(10):879-914.
    YAO Z T, LI J H, XIE H H , et al. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 2012,16(4):722-729.
    徐笠, 陆安祥, 王纪华 . 土壤重金属污染评价方法研究进展及其在禁产区划分工作中的比较应用[J]. 食品安全质量检测学报, 2016(3):1145-1151.

    XU L, LU A X, WANG J H . Research progress of soil pollution assessment methods and their application in the division of non-agricultural producing region[J]. Journal of Food Safety and Quality, 2016(3):1145-1151.
    PERRINO E V, BRUNETTI G, FARRAG K . Plant communities in multi-metal contaminated soils:a case study in the National Park of Alta Murgia (Apulia Region-Southern Italy)[J]. International Journal of Phytoremediation, 2014,16(7/8/9/10/11/12):871-888.
    LI Z W, ZHOU M M, LIN W D . The research of nanoparticle and microparticle hydroxyapatite amendment in multiple heavy metals contaminated soil remediation[J]. Journal of Nanomaterials, 2014(2):1-8.
    串丽敏, 赵同科, 郑怀国 , 等. 土壤重金属污染修复技术研究进展[J]. 环境科学与技术, 2014(增刊2):213-222.

    CHUAN L M, ZHAO T K, ZHENG H G , et al. Research advances in remediation of heavy metal contaminated soils[J]. Environmental Science and Technology, 2014(Suppl 2):213-222.
    MANI D, KUMAR C, PATEI N K . Hyperaccumulator oil cake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils[J]. International Journal of Phytoremediation, 2015,17(1/2/3/4/5/6):256-263.
    杨勇, 柯艳明, 栾景丽 , 等. 国际污染场地土壤修复技术综合分析[J]. 环境科学与技术, 2012,35(10):92-98.

    YANG Y, KE Y M, LUAN J L , et al. Comprehensive analysis on soil remediation technologies of international contaminated sites[J]. Environmental Science and Technology, 2012,35(10):92-98.
    KOSHLAF E, SHAHSAVARI E, ABURTO-MEDINA A , et al. Bioremediation potential of diesel-contaminated Libyan soil[J]. Ecotoxicology and Environmental Safety, 2016,133:297-305.
    LIM M W, LAU E V, POH P E . A comprehensive guide of remediation technologies for oil contaminated soil-present works and future directions[J]. Marine Pollution Bulletin, 2016,109(1):14-45.
    XU J, BRAVO A G, LAGERKVIST A , et al. Sources and remediation techniques for mercury contaminated soil[J]. Environment International, 2015,74:42-53.
    HE L, GIELEN G, BOLAN N S , et al. Contamination and remediation of phthalic acid esters in agricultural soils in China:a review[J]. Agronomy for Sustainable Development, 2015,35(2):519-534.
    李韵诗, 冯冲凌, 吴晓芙 , 等. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015,35(20):6881-6890.

    LI Y S, FENG C L, WU X F , et al. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils[J]. Acta Ecologica Sinica, 2015,35(20):6881-6890.
    钱春香, 王明明, 许燕波 . 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报, 2013,43(3):669-674.

    QIAN C X, WANG M M, XU Y B . Current situation of soil contamination by heavy metals and research progress in bio-remediation technique[J]. Journal of Southeast University, 2013,43(3):669-674.
    YAO Z, LI J, XIE H , et al. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 2012,16(4):722-729.
    李珊珊, 张文毓, 孙长虹 , 等. 基于文献计量分析土壤修复的研究现状与趋势[J]. 环境工程, 2015,33(5):160-165.

    LI S S, ZHANG W Y, SUN C H , et al. Status and trends analysis on remediation of pollution soil in China based on literature motrology[J]. Environmental Engineering, 2015,33(5):160-165.
    吴耀楣 . 中国土壤重金属污染修复技术的专利文献计量分析[J]. 生态环境学报, 2013,22(5):901-904.

    WU Y M . Patent bibliometric analysis on the remediation techniques of soil heavy metal pollution[J]. Ecology and Environmental Sciences, 2013,22(5):901-904.
    TODD L F, LANDMAN K, KELLY S , et al. Phytoremediation:an interim landscape architecture strategy to improve accessibility of contaminated vacant lands in Canadian municipalities[J]. Urban Forestry and Urban Greening, 2016,18(8):242-256.
    DIXIT R, WASIULLAH, MALAVIYA D , et al. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes[J]. Sustainability, 2015,7(2):2189-2212.
    OH K, LI T, CHENG H Y , et al. Development of profitable phytoremediation of contaminated soils with biofuel crops[J]. Journal of Environmental Protection, 2013,4:58-64.
    DUSHENKOV V, KUMAR P B, HARRY M , et al. Rhizofiltration:the use of plants to remove heavy metals from agueous stream[J]. Environmental Science and Technology, 1995,29(5):1239-1245.
    BOECHAT C L, PISTOIA V C, GIANELO C . Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul State,Brazil[J]. Environmental Science and Pollution Research, 2015,23(3):1-10.
    刘拥海 . 重金属污染的植物修复技术及其生理机制[J]. 肇庆学院学报, 2006,27(5):42-45.

    LIU Y H . Heavy metal phytoremediation technology and its physiological mechanisms[J]. Journl of Zhaoqing University, 2006,27(5):42-45.
    LI Z, WU L, HU P , et al. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizinccola[J]. Environmental Pollution, 2014,189(12):176-183.
    YUAN X, LUAN J, SHI J . Spatial variability of bacteria in the rhizosphere of Elsholtzia splendens under Cu contamination[J]. Environmental Science and Pollution Research, 2014,21(16):9809-9818.
    DMUCHOWSKI W, GOZDOWSKI D, BRAGOSZEWSKA P , et al. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth)[J]. Ecological Engineering, 2014,71(10):32-35.
    YEUNG A T, GU Y Y . A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011,195(52):11-29.
    MEAGHER R B . Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000,3(2):153-162.
    龙新宪, 杨肖娥, 倪吾钟 . 重金属污染土壤修复技术研究的现状与展望[J]. 应用生态学报, 2002,13(6):757-762.

    LONG X X, YANG X E, NI W Z . Current situation and prospect on the remediation of soils contaminated by heavy metals[J]. Chinese Journal of Applied Ecology, 2002,13(6):757-762.
    MCGRATH S P, LOMBI E, GRAY C W , et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri[J]. Environmental Pollution, 2006,141(1):115-125.
    BECH J, DURAN P, ROCA N , et al. Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation[J]. Journal of Geochemical Exploration, 2012,123(3):109-113.
    MATTAROZZI M, VISIOLI G, SANANGEIANTONI A M , et al. ESEM-EDS:in vivo characterization of the Ni hyperaccumulator Noccaea caerulescens[J]. Micron, 2015,75:18-26.
    MA Y, RAJKUMAR M, LUO Y , et al. Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b[J]. Chemosphere, 2013,93(7):1386-1392.
    REZANIA S, TAIB S M, DIN M F M , et al. Comprehensive review on phytotechnology:heavy metals removal by diverse aquatic plants species from wastewater[J]. Journal of Hazardous Materials, 2016,318:587-599.
    MISHRA V K, TRIPATHI B D . Concurrent removal and accumulation of heavy metals by three aquatic macrophytes[J]. Bioresource Technology, 2008,99(15):7091-7097.
    RAI P K . Heavy metals in water,sediments and wetland plants in an aquatic ecosystem of tropical industrial region,India[J]. Environmental Monitoring and Assessment, 2008,158(1/2/3/4):433-457.
    SZULC P M, KOBIERSKI M, MAJTKOWSKI W . Evaluation of the use of spring rapeseed in phytoremediation of soils contaminated with trace elements and their effect on yield parameters[J]. Plant Breeding and Seed Science, 2015,69(1):81-95.
    PRASAD M N V, MALEC P, WALOSZEK A , et al. Physiological responses of Lemna trisulca L.(duckweed) to cadmium and copper bioaccumulation[J]. Plant Science, 2001,16(5):881-889.
    鲍桐, 廉梅花, 孙丽娜 , 等. 重金属污染土壤植物修复技术强化措施研究进展[J]. 生态环境学报, 2008,17(2):858-865.

    BAO T, LIAN M H, SUN L N , et al. Research progress in strengthening measures for phytoremediation of soils contaminated by heavy metals[J]. Ecology and Environmental Sciences, 2008,17(2):858-865.
    李敬龙, 刘晔, 潘爱珍 . 生物表面活性剂及其应用[J]. 山东轻工业学院学报, 2004,18(2):41-42.

    LI J L, LIU Y, PAN A Z . Biosurfactants and their application[J]. Journal of Shandong Institute of Light Industry, 2004,18(2):41-42.
    THOMAS J C, DAVIES E C, MALICK F K , et al. Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils[J]. Biotechnology Progress, 2003,19(2):273-280.
    NAGATA T, NAKAMURA A, AKIZAWA T , et al. Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury[J]. Biological and Parmaceutical Bulletin, 2009,32(9):1491-1495.
    王开爽, 吉凡, 王莉 , 等. 螯合诱导技术强化植物修复铅污染土壤的研究现状及展望[J]. 安徽农学通报, 2014(9):100-102.

    WANG K S, JI F, WANG L , et al. Present situation and prospect on application of chelateinduced phytoremediation of lead contaminated soils[J]. Anhui Agricultural Science Bulletin, 2014(9):100-102.
    SETH C S, MISRA V, SINGH R R , et al. EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture[J]. Plant and Soil, 2011,347(1):231-242.
    MARQUES A, RUI S, SAMARDJIEVA K , et al. EDDS and EDTA-enhanced zinc accumulation by solanum nigrum inoculated with arbuscular mycorrhizal fungi grown in contaminated soil[J]. Chemosphere, 2008,70(6):1002-1014.
    WANG D, ZHANG X, LIU J , et al. Oxalic acid enhances Cr tolerance in the accumulating plant leersia hexandra swartz[J]. International Journal of Phytoremediation, 2012,14(10):966-977.
    SILLANPAA M E T, KURNIAWAN T A, LO W H . Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)[J]. Chemosphere, 2011,83(11):1443-1460.
    晁阳, 袁兴中, 曾光明 , 等. 生物表面活性剂在城市污泥静态强制通风好氧堆肥中的作用[J]. 环境工程学报, 2012,6(4):1331-1336.

    CHAO Y, YUAN X Z, ZENG G M , et al. Application of biosurfactant in static forced-aeration composting of sewage sludge[J]. Chinese Journal of Environmental Engineering, 2012,6(4):1331-1336.
    邬思丹, 刘云国, 曾光明 , 等. 表面活性剂强化污泥生物淋滤Cu、Zn的研究[J]. 中国环境科学, 2010,30(6):791-795.

    WU S D, LIU Y G, ZENG G M , et al. Surfactant-enhanced bioleaching of Cu and Zn from sewage sludge[J]. China Environmental Science, 2010,30(6):791-795.
    时进钢, 傅海燕, 袁兴中 , 等. 鼠李糖脂对沉积物中Cd和Pb的去除作用[J]. 环境化学, 2005,24(1):55-58.

    SHI J G, FU H Y, YUAN X Z , et al. Removal of heavy methods from sediment by rhamnolipid[J]. Environmental Chemistry, 2005,24(1):55-58.
    蒋煜峰, 展惠英, 张德懿 , 等. 皂角苷络合洗脱污灌土壤中重金属的研究[J]. 环境科学学报, 2006,26(8):1315-1319.

    JIANG Y F, ZHAN H Y, ZHANG D Y , et al. Study on desorption of heavy metal in sewage-irrigated soil by complexing with saponin[J]. Acta Scientiae Circumstantiae, 2006,26(8):1315-1319.
    李稹, 黄娟, 姜磊 , 等. 人工湿地植物根系分泌物与根际微环境相关性的研究进展[J]. 安全与环境学报, 2012,12(5):41-45.

    LI Z, HUANG J, JIANG L , et al. Research advances in the relation between plant root exudates and rhizosphere micro-environment in the made-made wetlands[J]. Journal of Safety and Environment, 2012,12(5):41-45.
    施积炎, 陈英旭, 林琦 , 等. 根分泌物与微生物对污染土壤重金属活性的影响[J]. 中国环境科学, 2004,24(3):316-319.

    SHI J Y, CHEN Y X, LIN Q , et al. The influence of root exudates and microbe on heavy metal activity in contaminated soil[J]. China Environmental Science, 2004,24(3):316-319.
    张晓, 宋海亮, 高韵辰 , 等. 典型根系分泌物成分对人工湿地去除雌激素的影响[J]. 生态环境学报, 2015,29(9):1505-1511.

    ZHANG X, SONG H L, GAO Y C , et al. Effects of typical root exudate constituents on the removal of steroidal estrogens in constructed wetland[J]. Ecology and Environmental Sciences, 2015,24(9):1505-1511.
    徐礼生, 吴龙华, 高贵珍 , 等. 重金属污染土壤的植物修复及其机理研究进展[J]. 地球与环境, 2010,38(3):372-377.

    XU L S, WU L H, GAO G Z , et al. Progress in research on and mechanism of phytoremediation for heavy metal-polluted soil[J]. Earth and Environment, 2010,38(3):372-377.
    YANG Z M, YANG H, WANG J , et al. Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L.[J]. Plant Science, 2004,166(66):1589-1594.
    VALENTINUZZI F, CESCO S, TOMASI N , et al. Influence of different trap solutions on the determination of root exudates in Lupinus albus L.[J]. Biology and Fertility of Soils, 2015,51(6):1-9.
    COZZOLINO V, MARTINO A D, NEBBIOSO A , et al. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi[J]. Environmental Science and Pollution Research, 2016,23(11):1-11.
    NOGALES A, CORTES A, VELIANOS K , et al. Plantago lanceolata growth and Cr uptake after mycorrhizal inoculation in a Cr amended substrate[J]. Agriculture and Food Science, 2012,21(1):72-79.
    FAGUNDES-KLEN M R, VEIT M T, BORBA C E , et al. Copper biosorption by biomass of marine alga:study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column[J]. Water Air and Soil Pollution, 2010,213(1):15-26.
    CHEN B D, XIAO X Y, ZHU Y G , et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn[J]. Science of the Total Environment, 2007,379(23):226-234.
    DONG Y, ZHU Y G, SMITH F A , et al. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass(Lolium perenne L.) plants in an arsenic-contaminated soil[J]. Environmental Pollution, 2008,155(1):174-181.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1640) PDF Downloads(1751) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint