Volume 7 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHOU Jianqiang, HAN Jun, XU Yuanjian, YANG Lipeng. Morphology analysis of heavy metals in soil pollution in-situ remediation technique based on phyto-mimic method[J]. Journal of Environmental Engineering Technology, 2017, 7(1): 71-77. doi: 10.3969/j.issn.1674-991X.2017.01.011
Citation: ZHOU Jianqiang, HAN Jun, XU Yuanjian, YANG Lipeng. Morphology analysis of heavy metals in soil pollution in-situ remediation technique based on phyto-mimic method[J]. Journal of Environmental Engineering Technology, 2017, 7(1): 71-77. doi: 10.3969/j.issn.1674-991X.2017.01.011

Morphology analysis of heavy metals in soil pollution in-situ remediation technique based on phyto-mimic method

doi: 10.3969/j.issn.1674-991X.2017.01.011
More Information
  • Corresponding author: HAN Jun E-mail: han.j@e-etech.com; XU Yuanjian E-mail: xuyuanjian@cigit.ac.cn
  • Received Date: 2016-06-12
  • Publish Date: 2017-01-20
  • The field remediation effect of phyto-mimic method and the changes of Cr, Ni, Zn and Fe in different forms of soil were studied, using the in situ remediation technique based on phyto-mimic method. Results showed that after three months of phyto-mimic remediation, the concentration of Cr, Zn, Ni and Fe decreased month by month, with the reduction rate for heavy metals being 17.33%, 27.03%, 31.60% and 5.17%, respectively. The morphological changes of the four kinds of heavy metals in phyto-mimic remediation are not the same. The reduction rate of soil Zn and Cr contents of different forms is as follows: acid soluble> reducible> oxidizable> residual fraction; while the reduction rate of soil Ni and Fe contents of different forms is as follows: acid soluble> oxidizable > reducible > residual fraction. The four kinds of heavy metals can be enriched in the filler and simulation blade of the phyto-mimic remediation device, and the adsorption properties of the filler will affect the content of the four kinds of heavy metals in the simulated blade.

     

  • loading
  • [1]
    杨勇, 何艳明, 栾景丽 , 等. 国际污染场地土壤修复技术综合分析[J]. 环境科学与技术, 2012,35(10):92-98.

    YANG Y, HE Y M, LUAN J L , et al. Comprehensive analysis on soil remediation technologies of international contaminated sites[J]. Environmental Science & Technology, 2012,35(10):92-98.
    [2]
    DERMONT G, BERGERON M, MERCIER G , et al. Soil washing for metal removal:a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008,152:1-31.
    doi: 10.1016/j.jhazmat.2007.10.043 pmid: 18036735
    [3]
    ACAR Y B, GALE R J, ALSHAWABKEH A N , et al. Electrokinetic remediation:basics and technology status[J]. Journal of Hazardous Materials, 1995,40:117-137.
    [4]
    ALI H, KHAN E, SAJAD M A . Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013,91:869-881.
    doi: 10.1016/j.chemosphere.2013.01.075 pmid: 23466085
    [5]
    JUWARKAR A A, SINGH S K, MUDHOO A . A comprehensive overview of elements in bioremediation[J]. Reviews in Environmental Science and Bio-Technology, 2010,9:215-288.
    [6]
    UDEIGWE T K, EZE P N, TEBOH J M , et al. Application,chemistry,and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality[J]. Environment International, 2011,37:258-267.
    doi: 10.1016/j.envint.2010.08.008 pmid: 20832118
    [7]
    ZHOU Y F, HAYNES R J . Sorption of heavy metals by inorganic and organic components of solid wastes:significance to use of wastes as low-cost adsorbents and immobilizing agents[J]. Critical Reviews in Environmental Science and Technology, 2010,40:909-977.
    [8]
    韩君, 梁学峰, 徐应明 , 等. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014,34(11):2853-2860.

    HAN J, LIANG X F, XU Y M , et al. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen phosphorus and enzymatic activities[J]. Acta Scientiae Circumstantiae, 2014,34(11):2853-2860.
    [9]
    徐愿坚, 韩君, 杨舒 , 等. 基于植物仿生的污染土壤原位自持修复装置和方法:中国,201410001839.7[P]. 2014-01-02.
    [10]
    周建强, 刘晓玲, 韩君 , 等. 基于植物仿生的土壤重金属污染原位自持修复技术[J]. 环境化学, 2016,35(7):1398-1406.

    ZHOU J Q, LIU X L, HAN J , et al. Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development[J]. Environment Chemistry, 2016,35(7):1398-1406.
    [11]
    吴国辉, 刘福娟 . 植物的蒸腾作用分析[J]. 农机化研究, 2004(5):287.
    [12]
    董泽军 . 植物蒸腾作用高速率之原因[J]. 中国农学通报, 2010,26(21):131-135.

    DONG Z J . A primary discussion on high velocity of plant transpiration[J]. Chinese Agricultural Science Bulletin, 2010,26(21):131-135.
    [13]
    朱健, 王平, 罗文连 , 等. 硅藻土吸附重金属离子研究现状及进展[J]. 中南林业科技大学学报, 2011,31(7):183-189.

    ZHU J, WANG P, LUO W L , et al. Present situation and development of adsorption of diatomite for heavy metal ions[J]. Journal of Central South University of Forestry & Technology, 2011,31(7):183-189.
    [14]
    林青, 徐绍辉 . 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008,40(5):706-711.

    LIN Q, XU S H . A review on competitive adsorption of heavy metal in soils[J]. Soils, 2008,40(5):706-711.
    [15]
    黄昌勇, 徐建明 . 土壤学[M]. 北京: 中国农业出版社, 2010.
    [16]
    CHADI H S . Speciation of zinc in contaminated soils[J]. Environmental Pollution, 2008,155:208-216.
    doi: 10.1016/j.envpol.2007.12.006 pmid: 18222022
    [17]
    戴树桂 . 环境化学进展[M]. 北京: 化学工业出版社, 2005: 181-183.
    [18]
    MA Y B, UREN N C . The fate and transformation of zinc added to soils[J]. Australian Journal of Soil Research, 1997,53:727-738.
    doi: 10.1021/es403466p pmid: 24195448
    [19]
    COVELO E F, ANDRADE M L, VEGA F A . Heavy metal adsorption by humic umbrisols:selectivity sequences and competitive sorption kinetics[J]. Journal of Colloid and Interface Science, 2004,280(1):1-8.
    doi: 10.1016/j.jcis.2004.07.024 pmid: 15476767
    [20]
    MCBRIDE M B, SUAVE S, HENDERSOT W . Solubility control of Cu,Zn,Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 2005,48(2):337-346.
    [21]
    GUILLON E, FLOGEAC K, APLINCOURT M . Competitive sorption of metal ions onto a north-eastern France soil:isotherms and XAFS studies[J]. Geoderma, 2007,139:180-189.
    [22]
    赵芳玉, 薛洪海, 李哲 , 等. 低品位硅藻土吸附重金属的研究[J]. 生态环境学报, 2010,19(12):2978-2981.

    ZHAO F Y, XUE H H, LI Z , et al. Study on the adsorption of heavy metals with raw linjiang diatomite[J]. Ecology and Environmental Sciences, 2010,19(12):2978-2981.
    [23]
    徐应明, 梁学峰, 孙国红 , 等. 海泡石表面化学特性及其对重金属Pb 2+Cd 2+Cu 2+吸附机理研究 [J]. 农业环境科学学报, 2009,28(10):2057-2063.

    XU Y M, LIANG X F, SUN G H , et al. Surface chemical characteristics of sepiolites and their adsorption mechanisms of Pb 2+,Cd 2+ and Cu 2+ [J]. Journal of Agro-Environment Science, 2009,28(10):2057-2063.
    [24]
    李媛媛, 刘文华, 陈富强 , 等. 巯基化改性膨润土对重金属的吸附性能[J]. 环境工程学报, 2013,7(8):3013-3018.

    LI Y Y, LIU W H, CHEN F Q , et al. Adsorption properties of thiol-functionalized bentonite for heavy metals[J]. Chinese Journal of Environmental Engineering, 2013,7(8):3013-3018.
    [25]
    蔡信德, 仇荣亮, 陈桂珠 . 外加镍在土壤中的形态与再分配[J]. 生态环境, 2015,14(3):341-344.

    CAI X D, QIU R L, CHEN G Z . Speciation and redistribution of nickel added in soil[J]. Ecology and Environment, 2015,14(3):341-344.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1953) PDF Downloads(1248) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return