Volume 7 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHANG Qiuzi, WEI Yunxiao, JIANG Yonghai, WEI Xiaofei, WANG Fuwang. Oxidizing capacity of catalyzed hydrogen peroxide to petroleum hydrocarbon contaminated soil[J]. Journal of Environmental Engineering Technology, 2017, 7(1): 65-70. doi: 10.3969/j.issn.1674-991X.2017.01.010
Citation: ZHANG Qiuzi, WEI Yunxiao, JIANG Yonghai, WEI Xiaofei, WANG Fuwang. Oxidizing capacity of catalyzed hydrogen peroxide to petroleum hydrocarbon contaminated soil[J]. Journal of Environmental Engineering Technology, 2017, 7(1): 65-70. doi: 10.3969/j.issn.1674-991X.2017.01.010

Oxidizing capacity of catalyzed hydrogen peroxide to petroleum hydrocarbon contaminated soil

doi: 10.3969/j.issn.1674-991X.2017.01.010
More Information
  • Corresponding author: Yunxiao WEI E-mail: weiyunxiao@bceer.com
  • Received Date: 2016-06-03
  • Publish Date: 2017-01-20
  • Regarding to the petroleum hydrocarbon polluted sites that are remediated with H2O2 based ex-situ chemical oxidation, the oxidizing capacity and reactive process of catalyzed H2O2 were studied with different H2O2 mass fractions and oxidant to catalyst/stabilizer ratios. It is found that hydroxyl radical and superoxide anion are the major oxidation groups. The H2O2 mass fraction of 0.50%-1.00% and the oxidant to catalyst/stabilizer ratio of 75∶1-100∶1 provide higher total petroleum hydrocarbon (TPH) degradation rate. The results demonstrated that high H2O2 concentration and low oxidant to catalyst/stabilizer ratio may lead to rapid H2O2 decomposition that reduce the contact time between oxidant and contaminant and decrease the oxidizing efficiency. In addition, it is also found when H2O2 is under rapid decomposition, it tends to oxidize hydrocarbon molecules with less carbon number.

     

  • loading
  • [1]
    SIEGRIST R L, CRIMI M, SIMPKIN T J . In situ chemical oxidation for groundwater remediation[M]. New York:Springer, 2011: 34.
    [2]
    YANG X, XU X, XU J , et al. Iron oxychloride (FeOCl):an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013,135(43):16058-16061.
    doi: 10.1021/ja409130c pmid: 24124647
    [3]
    WATTS R J, TEEL A L . Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation[J]. Journal of Environmental Engineering, 2005,131:612-622.
    [4]
    KANG N, HUA I . Enhanced chemical oxidation of aromatic hydrocarbons in soil systems[J]. Chemosphere, 2005,61(7):909-922.
    doi: 10.1016/j.chemosphere.2005.03.039 pmid: 16257314
    [5]
    孙燕英, 刘菲, 陈鸿汉 , 等. H2O2氧化法修复柴油污染土壤[J]. 应用化学, 2007,24(6):680-683.

    SUN Y Y, LIU F, CHEN H H , et al. Remediation of diesel-contaminated soil by hydrogen peroxide oxidation technology[J]. Chinese Journal of Applied Chemistry, 2007,24(6):680-683.
    [6]
    KREMBS F J . Critical analysis of the field-scale application of in situ chemical oxidation for the remediation of contaminated groundwater[D]. Golden:Colorado School of Mines, 2008.
    [7]
    US EPA . Volatile organic compounds by gas chromatography/mass spectrometry (GC/MS):method 8260C[R]. Washington DC:US EPA, 2006.
    [8]
    US EPA . Nonhalogenated organics by gas chromatograph:method 8015C[R]. Washington DC:US EPA, 2007.
    [9]
    鲁如坤 . 土壤农业化学分析方法[M]. 北京: 农业科技出版社, 2000: 50-54.
    [10]
    de LAAT J, LE G T, LEGUBE B . A comparative study of the effects of chloride,sulfate,and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2[J]. Chemosphere, 2004,55:715-723.
    doi: 10.1016/j.chemosphere.2003.11.021 pmid: 15013676
    [11]
    FURMAN O, LAINE D F, BLUMENFELD A , et al. Enhanced reactivity of superoxide in water-solid matrices[J]. Environmental Science & Technology, 2009,43:1528-1533.
    doi: 10.1021/es802505s pmid: 19350930
    [12]
    SMITH B A, TEEL A L, WATTS R J . Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems[J]. Environmental Science & Technology, 2004,38:5465-5469.
    doi: 10.1021/es0352754 pmid: 15543752
    [13]
    JUNG Y, PARK J, KO S , et al. Stabilization of hydrogen peroxide using phthalic acids in the Fenton and Fenton-like oxidation[J]. Chemosphere, 2013,90(2):812-819.
    doi: 10.1016/j.chemosphere.2012.09.089 pmid: 23107057
    [14]
    USMAN M, HANNA K, HADERLAIN S . Fenton oxidation to remediate PAH in contaminated soils:a critical review of major limitations and counter-strategies[J]. Science of the Total Environment, 2016, 569/570:179-190.
    doi: 10.1016/j.scitotenv.2016.06.135 pmid: 27341118
    [15]
    FERRARESE E, ANDREOTTOLA G, OPREA I A . Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008,152:128-139.
    doi: 10.1016/j.jhazmat.2007.06.080 pmid: 17689010
    [16]
    TEEL A L, FINN D D, SCHMIDT J T , et al. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide[J]. Journal of Environmental Engineering, 2007,133:853-858.
    [17]
    CAO M, WANG L, WANG L , et al. Remediation of DDTs contaminated soil in a novel Fenton-like system with zero-valent iron[J]. Chemosphere, 2012,90(8):2303-2308.
    doi: 10.1016/j.chemosphere.2012.09.098 pmid: 23102698
    [18]
    HULING S G, PIVETZ B E . Engineering issue:in-situ chemical oxidation[R]. Washington DC:US EPA Agency Office of Research and Development, 2006: 58.
    [19]
    VILLA R D, TROVO A G, NOGUEIRA R F P . Environmental implication of soil remediation using the Fenton process[J]. Chemosphere, 2008,71:43-50.
    doi: 10.1016/j.chemosphere.2007.10.043 pmid: 18068206
    [20]
    BELTRAN F J, GOZALEZ M, RIVAS F J , et al. Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbon in water[J]. Water,Air & Soil Pollution, 1998,105:685-700.
    [21]
    BURBANO A A, DIONYSIOU D D, SUIDAN M T , et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent[J]. Water Research, 2005,39:107-118.
    doi: 10.1016/j.watres.2004.09.008 pmid: 15607170
    [22]
    KAN E, HULING S G . Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon[J]. Environmental Science & Technology, 2009,43:1493-1499.
    doi: 10.1021/es802360f pmid: 19350925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1717) PDF Downloads(1377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return