Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHENG J,PAN Q,WANG Y X,et al.Study on the composition and risk of chlorinated organic compounds in landfills and surrounding groundwater[J].Journal of Environmental Engineering Technology,2024,14(1):89-97 doi: 10.12153/j.issn.1674-991X.20230351
Citation: ZHENG J,PAN Q,WANG Y X,et al.Study on the composition and risk of chlorinated organic compounds in landfills and surrounding groundwater[J].Journal of Environmental Engineering Technology,2024,14(1):89-97 doi: 10.12153/j.issn.1674-991X.20230351

Study on the composition and risk of chlorinated organic compounds in landfills and surrounding groundwater

doi: 10.12153/j.issn.1674-991X.20230351
  • Received Date: 2023-05-09
  • Accepted Date: 2023-08-09
  • Rev Recd Date: 2023-08-08
  • Available Online: 2023-11-10
  • Chlorinated organic compounds are difficult to degrade and highly toxic, and landfills are important gathering places for chlorinated organic compounds. To evaluate the uncertain risk of landfill leachate contaminating groundwater with chlorinated organic compounds, a groundwater sample was collected from an informal landfill site. Combined with the collected data on the composition and concentration of chlorinated organic compounds in groundwater near 13 landfills in 6 countries including China, Germany, the United States, Spain, Poland, and Norway, a risk assessment model was used to assess their health risks. A total of 41 different types of chlorinated organic compounds, categorized into 10 classes, were identified in the groundwater near the landfills studied. The chlorinated cycloalkanes pose the highest carcinogenic risk, with all measurements surpassing 10−4, far exceeding the tolerable limits for human exposure, and presenting significant health hazards. The F-53B of chloropolyfluoroalkyl ether sulfonate has the lowest carcinogenic risk, between 10−6 and 10−4, and has a possible carcinogenic risk. The non-carcinogenic risk of chlorinated alkanes is the highest, among which the non-carcinogenic risk value of α-hexachlorocyclohexane (HCH) exceeds 1, more than the acceptable level for human beings. However, chlorinated organic pesticides such as propiconazole and permethrin have the lowest non-carcinogenic risk, and their non-carcinogenic risk value does not exceed the acceptable level for human body. Greater emphasis should be placed on risk management strategies for specific chlorinated organic compounds, namely γ-HCH, chlorobenzene, and 1,2-dichlorobenzene. Various methods, including oxidative dechlorination, reductive dechlorination, and co-metabolism dechlorination, can be employed to expedite the dechlorination and degradation processes, ultimately eliminating associated risks.

     

  • loading
  • [1]
    ABOYEJI O S, EIGBOKHAN S F. Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria[J]. Journal of Environmental Management,2016,183(1):333-341.
    [2]
    HAN D M, TONG X X, CURRELL M J, et al. Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China[J]. Journal of Geochemical Exploration,2014,136:24-39. doi: 10.1016/j.gexplo.2013.09.008
    [3]
    SIZIRICI B, TANSEL B. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study[J]. Waste Management,2015,38(4):263-270.
    [4]
    REN M Z, WANG J, WANG Z Y, et al. Activated carbon adsorption coupled with ozonation regeneration for efficient removal of chlorobenzene[J]. Journal of Environmental Chemical Engineering,2022,10(2):107319. doi: 10.1016/j.jece.2022.107319
    [5]
    YANG J, MENG L, GUO L. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application[J]. Environmental Science and Pollution Research,2018,25(6):5051-5062. doi: 10.1007/s11356-017-9903-7
    [6]
    张坤锋, 昌盛, 赵少延, 等. 克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092

    ZHANG K F, CHANG S, ZHAO S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092
    [7]
    HAMER T, MACHAY D, JONES K C. Model of the long-term exchange of PCBs between soil and atmosphere in the southern UK[J]. Environment science and technology,1995,29(5):1200-1209. doi: 10.1021/es00005a010
    [8]
    SIZIRICI B, TANSEL B. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study[J]. Waste Management,2015,38(1):263-270.
    [9]
    KARGES U, BECKER J, PÜTTMANN W. 1, 4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume[J]. Science of the Total Environment,2018,619-620:712-720. doi: 10.1016/j.scitotenv.2017.11.043
    [10]
    GABRYSZEWSKA M, GWOREK B. Municipal waste landfill as a source of polychlorinated biphenyls releases to the environment[J]. PeerJ,2021,9:e10546. doi: 10.7717/peerj.10546
    [11]
    HAARSTAD K. Long-term leakage of DDT and other pesticides from a tree nursery landfill[J]. Groundwater Monitoring & Remediation,2008,28(4):107-111.
    [12]
    BUSZKA P M, YESKIS D J, KOLPIN D W, et al. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002[J]. Bulletin of Environmental Contamination and Toxicology,2009,82(6):653-659. doi: 10.1007/s00128-009-9702-z
    [13]
    CHRISTENSON M, KAMBHU A, REECE J, et al. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements[J]. Chemosphere,2016,150:239-247. doi: 10.1016/j.chemosphere.2016.01.125
    [14]
    XU C, LIU Z Y, SONG X, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: implications for the usage of PFASs alternatives[J]. Science of The Total Environment,2021,751:141767. doi: 10.1016/j.scitotenv.2020.141767
    [15]
    SANTOS A, FERNÁNDEZ J, GUADAÑO J. Chlorinated organic compounds in liquid wastes (DNAPL) from lindane production dumped in landfills in Sabiñanigo (Spain)[J]. Environmental Pollution,2018,242:1616-1624. doi: 10.1016/j.envpol.2018.07.117
    [16]
    LIU Y Q, BASHIR S, STOLLBERG R, et al. Compound specific and enantioselective stable isotope analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in a complex aquifer system[J]. Environmental Science & Technology,2017,51(16):8909-8916.
    [17]
    FERNÁNDEZ J, ARJOL M A, CACHO C. POP-contaminated sites from HCH production in Sabiñánigo, Spain[J]. Environmental Science and Pollution Research volume. 2013, 20(4): 1937-1950.
    [18]
    DONG W H, ZHANG Y, LIN X Y, et al. Prediction of 1, 2, 4-trichlorobenzene natural attenuation in groundwater at a landfill in Kaifeng, China[J]. Environmental Earth Sciences,2014,72(3):941-948. doi: 10.1007/s12665-014-3386-3
    [19]
    张妍, 李发东, 欧阳竹, 等. 黄河下游引黄灌区地下水重金属分布及健康风险评估[J]. 环境科学,2013,34(1):121-128. doi: 10.13227/j.hjkx.2013.01.028

    ZHANG Y, LI F D, OUYANG Z, et al. Distribution and health risk assessment of heavy metals of groundwaters in the irrigation district of the lower reaches of Yellow River[J]. Environmental Science,2013,34(1):121-128. doi: 10.13227/j.hjkx.2013.01.028
    [20]
    杨源, 李如忠, 王友贞, 等. 淮北平原干沟控制排水区地下水氮污染及健康风险评估[J]. 安徽建筑大学学报,2014,22(4):82-87. doi: 10.11921/j.issn.2095-8382.20140418

    YANG Y, LI R Z, WANG Y Z, et al. Groundwater nitrogen pollution and assessment of its health risks in adrainage zone controlled through main drainage ditch in Huaibei Plain[J]. Journal of Anhui Jianzhu University,2014,22(4):82-87. doi: 10.11921/j.issn.2095-8382.20140418
    [21]
    师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学,2021,42(9):4246-4256. doi: 10.13227/j.hjkx.202101147

    SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou Peninsula[J]. Environmental Science,2021,42(9):4246-4256. doi: 10.13227/j.hjkx.202101147
    [22]
    程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095

    CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095
    [23]
    张浩, 王洋, 王辉, 等. 某废铅蓄电池炼铅遗留场地土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2023,13(2):769-777. doi: 10.12153/j.issn.1674-991X.20220313

    ZHANG H, WANG Y, WANG H, et al. Heavy metal pollution characteristics and health risk assessment of soil from an abandoned site for lead smelting of waste lead batteries[J]. Journal of Environmental Engineering Technology,2023,13(2):769-777. doi: 10.12153/j.issn.1674-991X.20220313
    [24]
    WANG Y, LI L, QIU Z P, et al. Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk[J]. Chemosphere,2021,272:129582. doi: 10.1016/j.chemosphere.2021.129582
    [25]
    LORENZO D, GARCÍA-CERVILLA R ROMERO A, et al. Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase[J]. Chemosphere,2020,239:124798. doi: 10.1016/j.chemosphere.2019.124798
    [26]
    WANG F, SONG K, HE X L, et al. Identification of groundwater pollution characteristics and health risk assessment of a landfill in a low permeability area[J]. International Journal of Environmental Research and Public Health,2021,18(14):7690. doi: 10.3390/ijerph18147690
    [27]
    杨成方, 刘宇航, 姚帆, 等. 徐州某老旧生活垃圾填埋场有机污染物研究[J]. 徐州工程学院学报(自然科学版),2021,36(2):58-65. doi: 10.15873/j.cnki.jxit.000409

    YANG C F, LIU Y H, YAO F, et al. On organic pollutants in an old garbage landfill in Xuzhou[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition),2021,36(2):58-65. doi: 10.15873/j.cnki.jxit.000409
    [28]
    张维生, 谭龙健, 宋来伟. 非正规垃圾填埋场污染调查与健康风险评估[J]. 中国资源综合利用,2021,39(12):163-166. doi: 10.3969/j.issn.1008-9500.2021.12.046

    ZHANG W S, TAN L J, SONG L W. Pollution investigation and health risk assessment of informal landfill sites[J]. China Resources Comprehensive Utilization,2021,39(12):163-166. doi: 10.3969/j.issn.1008-9500.2021.12.046
    [29]
    PAN Q, LIU Q Y, ZHENG J, et al. Volatile and semi-volatile organic compounds in landfill gas: composition characteristics and health risks[J]. Environment International,2023,174:107886. doi: 10.1016/j.envint.2023.107886
    [30]
    万译文, 康天放, 周忠亮, 等. 北京官厅水库水体中挥发性有机物健康风险评价[J]. 环境科学研究,2009,2(22):150-154. doi: 10.13198/j.res.2009.02.28.wanyw.009

    WAN Y W, KANG T F, ZHOU Z L, et al. Health risk assessment of volatile organic compounds in water of Beijing Guanting Reservoir[J]. Research of Environmental Sciences,2009,2(22):150-154. doi: 10.13198/j.res.2009.02.28.wanyw.009
    [31]
    王玉芬, 张肇铭, 胡筱敏, 等. 微生物法去除水中氯苯类化合物的研究进展[J]微生物学通报, 2008(6): 949-954.

    WANG Y F, ZHANG Z M, HU X M, et al. The research progress of treating chlorobenzenes in wastewater by microorganism[J]. Microbiology China, 2008(6): 949-954.
    [32]
    ARJOON A, OLANIRAN A, PILLAY B. Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies[J]. International Journal of Environmental Science & Technology,2013,10(2):395-412.
    [33]
    ACHERMANN S, MANSFELDT C B, MÜLLER M, et al. Relating metatranscriptomic profiles to the micropollutant biotransformation potential of complex microbial communities[J]. Environmental Science & Technology,2020,54(1):235-244.
    [34]
    ADRIAN L, SZEWZYK U, WECKE J, et al. Bacterial dehalorespiration with chlorinated benzenes[J]. Nature,2000,408:580-583. doi: 10.1038/35046063
    [35]
    甘平, 朱婷婷, 樊耀波, 等. 氯苯类化合物的生物降解[J]. 环境污染治理技术与设备,2000,1(4):1-12.

    GAN P, ZHU T T, FAN Y D, et al. Biodegradation of chlorobenzenes (CBS)[J]. Techniques and Equipment for Environmental Pollution Control,2000,1(4):1-12.
    [36]
    ALGHUTHAYMI M A, AWAD A M, HASSAN H A. Isolation and characterization a novel catabolic gene cluster involved in chlorobenzene degradation in haloalkaliphilic Alcanivorax sp. HA03[J]. Biology,2022,11(5):724. doi: 10.3390/biology11050724
    [37]
    BUNGE M, ADRIAN L, KRAUS A, et al. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium[J]. Nature:International Weekly Journal of Science,2003,421(6921):357-360.
    [38]
    CHRISTOF H, GERT W, GABRIELE D. Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiology Reviews,1998,22(5):383-398. doi: 10.1111/j.1574-6976.1998.tb00377.x
    [39]
    甘平, 樊耀波, 王敏健. 氯苯类化合物的生物降解[J]. 环境科学,2001(3):93-96. doi: 10.3321/j.issn:0250-3301.2001.03.020

    GAN P, FAN Y D, WANG M J, et al. Experiment of biodegradation of chlorobenzenes[J]. Environmental Science,2001(3):93-96. doi: 10.3321/j.issn:0250-3301.2001.03.020
    [40]
    梅林玲, 于静洁, 张燕, 等. 难降解有机污染物的共代谢研究进展[J]. 天津城建大学学报,2018,24(6):423-429. doi: 10.19479/j.2095-719x.1806423

    MEI L L, YU J J, ZHANG Y, et al. Progress in the research of co-metabolism of refractory organic pollutants[J]. Journal of Tianjin Chengjian University,2018,24(6):423-429. ⊕ doi: 10.19479/j.2095-719x.1806423
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article Views(365) PDF Downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return