Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WU S,DANG W B,SHI X J,et al.Whole process simulation of MSW gasification and melting system based on Aspen Plus[J].Journal of Environmental Engineering Technology,2024,14(1):184-193 doi: 10.12153/j.issn.1674-991X.20230349
Citation: WU S,DANG W B,SHI X J,et al.Whole process simulation of MSW gasification and melting system based on Aspen Plus[J].Journal of Environmental Engineering Technology,2024,14(1):184-193 doi: 10.12153/j.issn.1674-991X.20230349

Whole process simulation of MSW gasification and melting system based on Aspen Plus

doi: 10.12153/j.issn.1674-991X.20230349
  • Received Date: 2023-05-09
  • Accepted Date: 2023-09-26
  • Rev Recd Date: 2023-09-19
  • The gasification and melting process of municipal solid waste (MSW) can reduce the formation of dioxins and melt heavy metals, which is a clean and efficient solid waste treatment method. At present, most of the research is on the pyrolysis characteristics of MSW and the generation and emission of pollutants, while the research on the influence between the modules of the gasification and melting process system and the linkage change process of material flow and energy flow between each reactor is insufficient. The whole process simulation of MSW gasification and melting process was carried out by using Aspen Plus simulation platform based on Gibbs free energy minimization principle. The effects of waste drying temperature, waste moisture content, gasification temperature, gasification medium and ash melting point on the process node parameters, material flow and energy flow were analyzed, and the optimized process flow and operation parameters were proposed. The results showed that when the moisture content of garbage was 9%, the simulation of garbage pyrolysis could achieve energy self-sufficiency through flue gas circulation. Under the same conditions, different gasification agent media had the highest gasification efficiency using water vapor as the gasification medium, and the optimal process was achieved at a gasification temperature of 850 ℃ and a water vapor equivalence ratio of 50%. When the char produced after gasification was burned in the melting furnace to meet the ash melting point temperature, the increase of ash melting point made the proportion of gasification agent, the effective gas molar flow of gasification gas and the carbon conversion rate decreased continuously. The changes of material flow and energy flow under different working conditions has guiding significance for practical engineering.

     

  • loading
  • [1]
    国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022.
    [2]
    杨小妮, 张凯轩, 杨宏刚, 等. 西安市城市生活垃圾产生量的多元回归及ARIMA模型预测[J]. 环境卫生工程,2020,28(2):37-41. doi: 10.19841/j.cnki.hjwsgc.2020.02.008

    YANG X N, ZHANG K X, YANG H G, et al. Multiple regression and ARIMA model prediction on the yield of MSW in Xi'an[J]. Environmental Sanitation Engineering,2020,28(2):37-41. doi: 10.19841/j.cnki.hjwsgc.2020.02.008
    [3]
    KARAK T, BHAGAT R M, BHATTACHARYYA P. Municipal solid waste generation, composition, and management: the world scenario[J]. Critical Reviews in Environmental Science and Technology,2012,42(15):1509-1630. doi: 10.1080/10643389.2011.569871
    [4]
    朱铭珠, 杨延梅, 徐亚, 等. 填埋场防渗系统高密度聚乙烯膜漏洞修补技术探析[J]. 环境工程技术学报,2022,12(5):1647-1652. doi: 10.12153/j.issn.1674-991X.20210640

    ZHU M Z, YANG Y M, XU Y, et al. Discussion on repair technologies of high-density polyethylene membrane leaks in landfill anti-seepage system[J]. Journal of Environmental Engineering Technology,2022,12(5):1647-1652. doi: 10.12153/j.issn.1674-991X.20210640
    [5]
    吴昊, 刘宏博, 田书磊, 等. 城市生活垃圾焚烧飞灰利用处置现状及环境管理[J]. 环境工程技术学报,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083

    WU H, LIU H B, TIAN S L, et al. Current situation for utilization and disposal and environmental management of fly ash from municipal solid waste incineration[J]. Journal of Environmental Engineering Technology,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083
    [6]
    张明远, 万新. 冶金高炉高温熔融处理垃圾飞灰[J]. 环境工程学报,2012,6(8):2859-2864.

    ZHANG M Y, WAN X. High-temperature melting treatment of fly ash by blast furnace[J]. Techniques and Equipment for Environmental Pollution Control,2012,6(8):2859-2864.
    [7]
    武建业. 城市生活垃圾焚烧处理技术综述[J]. 甘肃科技,2020,36(5):22-26. doi: 10.3969/j.issn.1000-0952.2020.05.010

    WU J Y. Summary of incineration treatment technology of municipal solid waste[J]. Gansu Science and Technology,2020,36(5):22-26. doi: 10.3969/j.issn.1000-0952.2020.05.010
    [8]
    曲金星. 水分对城市生活垃圾热解气化特性影响的试验研究[D]. 杭州: 浙江大学, 2007.
    [9]
    LIN C J, ZHANG J, ZHAO P T, et al. Gasification of real MSW-derived hydrochar under various atmosphere and temperature[J]. Thermochimica Acta,2020,683:178470. doi: 10.1016/j.tca.2019.178470
    [10]
    刘雨豪. 垃圾低温热解特性的模拟研究以及全生命周期分析[D]. 武汉: 华中科技大学, 2019.
    [11]
    别如山, 张庆红, 惠阳. 垃圾焚烧飞灰旋风炉高温熔融试验研究[J]. 工业锅炉,2009(4):1-4. doi: 10.3969/j.issn.1004-8774.2009.04.001

    BIE R S, ZHANG Q H, HUI Y. Test study on fly ash from MSWI molten at high temperature in cyclone furnace[J]. Industrial Boiler,2009(4):1-4. doi: 10.3969/j.issn.1004-8774.2009.04.001
    [12]
    NATARIANTO I, SAVEED M, AJAY K, et al. Modeling low temperature plasma gasification of municipal solid waste[J]. Environmental Technology & Innovation,2019,15:100412.
    [13]
    熊杰明, 李江保. 化工流程模拟Aspen Plus实例教程[M]. 2版. 北京: 化学工业出版社, 2016.
    [14]
    DUAN W J, YU Q B, WANG K, et al. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system[J]. Energy Conversion and Management,2015,100:30-36. doi: 10.1016/j.enconman.2015.04.066
    [15]
    RUDRA S, TESFAGABER Y K. Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production[J]. Energy,2019,180:881-892. doi: 10.1016/j.energy.2019.05.125
    [16]
    TUNGALAG A, LEE B, YADAV M, et al. Yield prediction of MSW gasification including minor species through ASPEN plus simulation[J]. Energy,2020,198:117296. doi: 10.1016/j.energy.2020.117296
    [17]
    AVDHESH K, SHARMA. Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier[J]. Enconman,2008,49(4):832-842.
    [18]
    WANG H M, REN R W, LIU B J, et al. Hydrogen production with an auto-thermal MSW steam gasification and direct melting system: a process modeling[J]. International Journal of Hydrogen Energy,2022,47(10):6508-6518. doi: 10.1016/j.ijhydene.2021.12.009
    [19]
    郝彦龙, 侯成林, 付丽霞, 等. 生活垃圾无害化处理工程设计实例[J]. 环境工程,2020,38(2):135-139. doi: 10.13205/j.hjgc.202002019

    HAO Y L, HOU C L, FU L X, et al. Engineering design of a municipal solid waste disposal project[J]. Environmental Engineering,2020,38(2):135-139. doi: 10.13205/j.hjgc.202002019
    [20]
    KECHE A J, GADDALE A P R, TATED R G. Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS[J]. Clean Technologies and Environmental Policy,2015,17(2):465-473. doi: 10.1007/s10098-014-0804-x
    [21]
    郑志行, 张家元, 李俊宇, 等. 下吸式固定床的生物质O2/CO2分段气化流程模拟[J]. 太阳能学报,2022,43(6):239-245.

    ZHENG Z H, ZHANG J Y, LI J Y, et al. Process simulation of biomass O2/CO2 staged gasification in downdraft fixed bed[J]. Acta Energiae Solaris Sinica,2022,43(6):239-245.
    [22]
    孙兰义. 化工过程模拟实训: Aspen Plus教程[M]. 2版. 北京: 化学工业出版社, 2017.
    [23]
    RENGANATHAN T, YADAV M V, PUSHPAVANAM S, et al. CO2 utilization for gasification of carbonaceous feedstocks: a thermodynamic analysis[J]. Chemical Engineering Science,2012,83:159-170. doi: 10.1016/j.ces.2012.04.024
    [24]
    潘春鹏. 生活垃圾固定床热解气化的实验研究[D]. 杭州: 浙江大学, 2012.
    [25]
    李志, 杜学森, 汪宇, 等. 低温等离子体催化水煤气变换反应: 催化剂载体的影响[J]. 工程热物理学报,2022,43(8):2202-2211.

    LI Z, DU X S, WANG Y, et al. Water gas shift reaction by non-thermal plasma-catalysis: effect of catalyst supports[J]. Journal of Engineering Thermophysics,2022,43(8):2202-2211.
    [26]
    窦明辉, 孙洋, 韩嘉伟, 等. 焦炭在H2O+CO2气氛中的溶损反应特性[J]. 钢铁,2022,57(7):26-33.

    DOU M H, SUN Y, HAN J W, et al. Solution loss characteristics of cokes in H2O+CO2 atmosphere[J]. Iron & Steel,2022,57(7):26-33.
    [27]
    王超, 王华, 刘颖琳, 等. 煤灰主要成分与流动温度关系预测[J]. 山东电力技术,2019,46(12):72-75. doi: 10.3969/j.issn.1007-9904.2019.12.015

    WANG C, WANG H, LIU Y L, et al. Prediction of relationship between main components of coal ash and flow temperature[J]. Shandong Electric Power,2019,46(12):72-75. □ doi: 10.3969/j.issn.1007-9904.2019.12.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article Views(239) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return