Volume 13 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
MI Y,LI T,WU B,et al.Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J].Journal of Environmental Engineering Technology,2023,13(5):1740-1751 doi: 10.12153/j.issn.1674-991X.20221291
Citation: MI Y,LI T,WU B,et al.Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J].Journal of Environmental Engineering Technology,2023,13(5):1740-1751 doi: 10.12153/j.issn.1674-991X.20221291

Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation

doi: 10.12153/j.issn.1674-991X.20221291
  • Received Date: 2022-12-30
  • Land use or cover change (LUCC) is an important factor leading to the change of carbon storage in regional ecosystems. Exploring the spatio-temporal evolution law of land use and carbon storage is of great significance to regional land spatial planning and ecological management, as well as to the realization of the strategic goal of "dual carbon". The GeoDetector-PLUS-InVEST model was built to analyze the spatio-temporal evolution characteristics of land use and carbon storage of Chang-Zhu-Tan 3+5 urban agglomeration from 2000 to 2020 based on multi-source data, to predict the changes of land use and carbon storage under different scenarios in 2030, and to analyze the spatial distribution regularity of carbon storage through the spatial autocorrelation model. The results showed that: 1) Kappa coefficient, FoM coefficient and overall accuracy of the optimized simulation model were 0.81%, 1.00% and 0.67%, respectively, higher than those of the non-optimized simulation. 2) From 2000 to 2020, the land use changes in the study areas showed that the areas of cultivated land, forest land, grassland and water decreased, and the areas of construction land and unused land increased. 3) The carbon storage of the three phases in 2000, 2010 and 2020 were 31.262 4×108、31.218 1×108 and 31.089 1×108 t, respectively, during which the carbon storage decreased by 17.328 7×106 t. 4) Compared with 2020, carbon storage under the natural development scenario in 2030 would decrease by 12.148 3×106 t, carbon storage decrease by 11.746 7 ×106 t under the urban development scenario, carbon storage increase by 14.754 0×106 t under the ecological protection scenario. The spatial distribution of carbon storage under the three different scenarios was relatively similar, with the remarkable characteristic of spatial agglomeration, and it was closely related to land use. The research results could provide decision-making reference for the land space planning and formulation of "dual carbon" policy within Chang-Zhu-Tan 3+5 urban agglomeration.

     

  • loading
  • [1]
    习近平代表第十九届中央委员会向党的二十大作报告[EB/OL]. (2022-10-16)[2023-02-20]. https://www.12371.cn/2022/10/16/ARTI1665901576200482.shtm.
    [2]
    方精云, 于贵瑞, 任小波, 等.中国陆地生态系统固碳效应: 中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展[J]. 中国科学院院刊,2015,30(6):848-857.
    [3]
    陈耀亮, 罗格平, 叶辉, 等.1975—2005年中亚土地利用/覆被变化对森林生态系统碳储量的影响[J]. 自然资源学报,2015,30(3):397-408. doi: 10.11849/zrzyxb.2015.03.004

    CHEN Y L, LUO G P, YE H, et al. Sources and sinks of carbon caused by forest land use change from 1975 to 2005 in central Asia[J]. Journal of Natural Resources,2015,30(3):397-408. doi: 10.11849/zrzyxb.2015.03.004
    [4]
    陈广生, 田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报,2007,31(2):189-204. doi: 10.3321/j.issn:1005-264X.2007.02.003

    CHEN G S, TIAN H Q. Land use/cover change effects on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology,2007,31(2):189-204. doi: 10.3321/j.issn:1005-264X.2007.02.003
    [5]
    杨潋威, 赵娟, 朱家田, 等.基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感,2022,34(4):175-182.

    YANG L W, ZHAO J, ZHU J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources,2022,34(4):175-182.
    [6]
    张育诚, 韩念龙, 胡珂, 等.海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版),2023,47(2):115-122.

    ZHANG Y C, HAN N L, HU K, et al. The impact of land-use changes on the spatio-temporal variation of carbon storage in the central mountainous area of Hainan Island[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023,47(2):115-122.
    [7]
    RIJAL S, RIMAL B, ACHARYA R P, et al. Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal[J]. Environmental Monitoring and Assessment,2021,193(10):651. doi: 10.1007/s10661-021-09441-z
    [8]
    RAFAEL H G, ARTURO R L, CLEMENTINA G. Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico[J]. Remote Sensing Applications:Society and Environment,2019,13:318-327. doi: 10.1016/j.rsase.2018.12.005
    [9]
    POTTER C S, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841. doi: 10.1029/93GB02725
    [10]
    邱建军, 唐华俊.北方农牧交错带耕地土壤有机碳储量变化模拟研究: 以内蒙古自治区为例[J]. 中国生态农业学报,2003,11(4):86-88.
    [11]
    FRIEDLINGSTEIN P, JONES M W, O'SULLIVAN M, et al. Global carbon budget 2019[J]. Earth System Science Data,2019,11(4):1783-1838. doi: 10.5194/essd-11-1783-2019
    [12]
    PRINCE S D, GOWARD S N. Global primary production: a remote sensing approach[J]. Journal of Biogeography,1995,22(4/5):815. doi: 10.2307/2845983
    [13]
    王天福, 龚直文, 邓元杰.基于土地利用变化的陕西省植被碳汇提质增效优先区识别[J]. 自然资源学报,2022,37(5):1214-1232. doi: 10.31497/zrzyxb.20220508

    WANG T F, GONG Z W, DENG Y J. Identification of priority areas for improving quality and efficiency of vegetation carbon sinks in Shaanxi Province based on land use change[J]. Journal of Natural Resources,2022,37(5):1214-1232. doi: 10.31497/zrzyxb.20220508
    [14]
    丁岳, 王柳柱, 桂峰, 等.基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学,2023,44(6):3343-3352. doi: 10.13227/j.hjkx.202204080

    DING Y, WANG L Z, GUI F, et al. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science,2023,44(6):3343-3352. doi: 10.13227/j.hjkx.202204080
    [15]
    LAI L, HUANG X J, YANG H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances,2016,2(11):e1601063. doi: 10.1126/sciadv.1601063
    [16]
    林彤, 杨木壮, 吴大放, 等.基于InVEST-PLUS模型的碳储量空间关联性及预测: 以广东省为例[J]. 中国环境科学,2022,42(10):4827-4839. doi: 10.3969/j.issn.1000-6923.2022.10.041

    LIN T, YANG M Z, WU D F, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model: a case study in Guangdong Province[J]. China Environmental Science,2022,42(10):4827-4839. doi: 10.3969/j.issn.1000-6923.2022.10.041
    [17]
    夏子良. 大庆市土地利用及植被碳储量动态变化特征[D]. 哈尔滨: 东北农业大学, 2022.
    [18]
    徐自为, 张智杰.基于土地利用变更调查的2010—2016年新疆尉犁县生态系统碳储量时空变化[J]. 环境科学研究,2018,31(11):1909-1917. doi: 10.13198/j.issn.1001-6929.2018.03.42

    XU Z W, ZHANG Z J. Spatiotemporal variation of carbon storage in Yuli County during 2010-2016[J]. Research of Environmental Sciences,2018,31(11):1909-1917. doi: 10.13198/j.issn.1001-6929.2018.03.42
    [19]
    刘洋, 张军, 周冬梅, 等.基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报,2021,41(10):4052-4065.

    LIU Y, ZHANG J, ZHOU D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica,2021,41(10):4052-4065.
    [20]
    裴宏伟, 张红娟, 张良, 等.清水河流域生态系统服务评估及预测[J]. 环境工程技术学报,2022,12(5):1466-1473. doi: 10.12153/j.issn.1674-991X.20210341

    PEI H W, ZHANG H J, ZHANG L, et al. Assessment and prediction of ecosystem services in Qingshui River Basin[J]. Journal of Environmental Engineering Technology,2022,12(5):1466-1473. doi: 10.12153/j.issn.1674-991X.20210341
    [21]
    HUANG D Q, HUANG J, LIU T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries[J]. Land Use Policy,2019,82:422-435. doi: 10.1016/j.landusepol.2018.12.028
    [22]
    李欣, 王志远, 刘丹丹, 等.生态安全格局约束下长株潭都市圈建设用地演变模拟与管控[J]. 环境工程技术学报,2023,13(1):348-358. doi: 10.12153/j.issn.1674-991X.20210835

    LI X, WANG Z Y, LIU D D, et al. Simulation and control of the evolution of construction land in Changzhutan Metropolitan Area under the constraints of ecological security pattern[J]. Journal of Environmental Engineering Technology,2023,13(1):348-358. doi: 10.12153/j.issn.1674-991X.20210835
    [23]
    SHI M J, WU H Q, FAN X, et al. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River valley, China[J]. Sustainability,2021,13(3):1577. doi: 10.3390/su13031577
    [24]
    LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems,2021,85:101569. doi: 10.1016/j.compenvurbsys.2020.101569
    [25]
    王旭熙, 彭立, 刘守江, 等.中国西南山区城市建设用地扩张特征及其驱动机制[J]. 生态学杂志,2021,40(9):2895-2903. doi: 10.13292/j.1000-4890.202109.017

    WANG X X, PENG L, LIU S J, et al. Characteristics and the driving mechanism of urban construction land expansion in mountainous areas of southwest China[J]. Chinese Journal of Ecology,2021,40(9):2895-2903. doi: 10.13292/j.1000-4890.202109.017
    [26]
    田义超, 梁铭忠, 任志远.城乡过渡区土地利用变化模拟与生态风险时空异质性特征[J]. 环境科学研究,2013,26(5):540-548. doi: 10.13198/j.res.2013.05.79.tianych.006

    TIAN Y C, LIANG M Z, REN Z Y. Simulation of land use change and temporal-spatial heterogeneity of eco-risk in urban fringe[J]. Research of Environmental Sciences,2013,26(5):540-548. doi: 10.13198/j.res.2013.05.79.tianych.006
    [27]
    王劲峰, 徐成东.地理探测器: 原理与展望[J]. 地理学报,2017,72(1):116-134. doi: 10.11821/dlxb201701010

    WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116-134. doi: 10.11821/dlxb201701010
    [28]
    欧阳晓, 王坤, 魏晓.城乡建设用地关联对生态系统服务的影响: 以洞庭湖地区为例[J]. 生态学报,2022,42(21):8713-8722.

    OUYANG X, WANG K, WEI X. Impacts of urban-rural construction land linkages on ecosystem services: a case study of Dongting Lake area[J]. Acta Ecologica Sinica,2022,42(21):8713-8722.
    [29]
    OUYANG X, TANG L S, WEI X, et al. Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations[J]. Land Use Policy,2021,109:105587. doi: 10.1016/j.landusepol.2021.105587
    [30]
    解宪丽, 孙波, 周慧珍, 等.中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报,2004,41(1):35-43. doi: 10.3321/j.issn:0564-3929.2004.01.006

    XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica,2004,41(1):35-43. doi: 10.3321/j.issn:0564-3929.2004.01.006
    [31]
    徐丽, 何念鹏, 于贵瑞.2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据,2019,4(1):90-96.

    XU L, HE N P, YU G R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. China Scientific Data,2019,4(1):90-96.
    [32]
    张考, 黄春华, 王志远, 等.基于优化地理模拟的长沙市城镇开发边界划定[J]. 科学技术与工程,2021,21(24):10461-10471. doi: 10.3969/j.issn.1671-1815.2021.24.049

    ZHANG K, HUANG C H, WANG Z Y, et al. Delimitation of urban development boundary in Changsha City based on optimal geographical simulation[J]. Science Technology and Engineering,2021,21(24):10461-10471. doi: 10.3969/j.issn.1671-1815.2021.24.049
    [33]
    王莉红, 张军民.基于地理探测器的绿洲城镇空间扩张驱动力分析: 以新疆石河子市为例[J]. 地域研究与开发,2019,38(4):68-74. doi: 10.3969/j.issn.1003-2363.2019.04.011

    WANG L H, ZHANG J M. Driving force analysis of spatial expansion of oasis towns based on geographical detectors: take Shihezi City in Xinjiang as an example[J]. Areal Research and Development,2019,38(4):68-74. doi: 10.3969/j.issn.1003-2363.2019.04.011
    [34]
    YAN Y C, JU H R, ZHANG S R, et al. Spatiotemporal patterns and driving forces of urban expansion in coastal areas: a study on urban agglomeration in the Pearl River Delta, China[J]. Sustainability,2019,12(1):191. doi: 10.3390/su12010191
    [35]
    雒舒琪, 胡晓萌, 孙媛, 等.耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报(中英文),2023,31(2):300-314. doi: 10.12357/cjea.20220520
    [36]
    李志芳, 王锐, 沈新磊.基于质量指数和空间自相关分析的耕地保护分区研究[J]. 土壤通报,2021,52(4):785-792. doi: 10.19336/j.cnki.trtb.2020090201

    LI Z F, WANG R, SHEN X L. Cultivated land protection zoning based on quality index and spatial autocorrelation[J]. Chinese Journal of Soil Science,2021,52(4):785-792. doi: 10.19336/j.cnki.trtb.2020090201
    [37]
    欧阳晓, 李勇辉, 徐帆, 等.城市用地扩张与生态环境保护的交互作用研究: 以长株潭城市群为例[J]. 经济地理,2021,41(7):193-201.
    [38]
    杨伶, 王金龙, 周文强.基于多情景模拟的洞庭湖流域LUCC与生境质量耦合演变分析[J]. 中国环境科学,2023,43(2):863-873. doi: 10.3969/j.issn.1000-6923.2023.02.039

    YANG L, WANG J L, ZHOU W Q. Coupling evolution analysis of LUCC and habitat quality in Dongting Lake Basin based on multi-scenario simulation[J]. China Environmental Science,2023,43(2):863-873. doi: 10.3969/j.issn.1000-6923.2023.02.039
    [39]
    魏玺, 邵亚, 蔡湘文, 等.漓江流域陆地生态系统碳储量时空特征与预测[J]. 环境工程技术学报,2023,13(3):1223-1233. doi: 10.12153/j.issn.1674-991X.20220378

    WEI X, SHAO Y, CAI X W, et al. Temporal and spatial characteristics and prediction of carbon storage in terrestrial ecosystem of Lijiang River Basin[J]. Journal of Environmental Engineering Technology,2023,13(3):1223-1233. doi: 10.12153/j.issn.1674-991X.20220378
    [40]
    熊炜.洞庭湖流域保护的立法问题研究[J]. 湘潭大学学报(哲学社会科学版),2020,44(6):105-109. doi: 10.13715/j.cnki.jxupss.2020.06.016
    [41]
    LIANG X, GUAN Q F, CLARKE K C, et al. Mixed-cell cellular automata: a new approach for simulating the spatio-temporal dynamics of mixed land use structures[J]. Landscape and Urban Planning,2021,205:103960. doi: 10.1016/j.landurbplan.2020.103960
    [42]
    ZHOU J J, ZHAO Y R, HUANG P, et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China[J]. Ecological Indicators,2020,118:106803. ◇ doi: 10.1016/j.ecolind.2020.106803
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article Views(173) PDF Downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return