Volume 11 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
CHEN Jialin, SU Hailei, SUN Fuhong, BAI Yangwei, GUO Fei. Aquatic biological risk assessment of Pb and Hg in sediments after tailings reservoir accidents based on non-parametric kernel density estimation model[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1182-1188. doi: 10.12153/j.issn.1674-991X.20210206
Citation: CHEN Jialin, SU Hailei, SUN Fuhong, BAI Yangwei, GUO Fei. Aquatic biological risk assessment of Pb and Hg in sediments after tailings reservoir accidents based on non-parametric kernel density estimation model[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1182-1188. doi: 10.12153/j.issn.1674-991X.20210206

Aquatic biological risk assessment of Pb and Hg in sediments after tailings reservoir accidents based on non-parametric kernel density estimation model

doi: 10.12153/j.issn.1674-991X.20210206
More Information
  • Corresponding author: BAI Yangwei E-mail: baiyw@craes.org.cn
  • Received Date: 2021-05-27
  • Publish Date: 2021-11-20
  • Mercury (Hg) and lead (Pb) are two typical heavy metal pollutants, which have strong toxic effects on aquatic ecosystems and are important indicators of environmental management. The leakage of Longxing Antimony Industry Tailings Pond in November 2015 had caused heavy metal pollution in a river section of about 346 km. High content of Hg and Pb in the tailing sands mainly end up in the river sediments that the pollutant passed through and the ecological risks of the basin caused by the high content of Hg and Pb in the tailings sands had not been comprehensively assessed scientifically. In order to solve the problem of less data on the toxic effects of pollutants in sediments on aquatic organisms, the phase equilibrium distribution method was adopted to use a large number of aquatic organisms toxicological test results and converted them into corresponding sediment toxic effect data. The non-parametric kernel density model was used to evaluate the ecological risks of Hg and Pb and compare it with three distribution models of Normal, Logistic and Weibull. The K-S test statistics, root mean square error (RMSE) and sum of square error (SSE) of Hg non-parametric kernel density model were 0.111 1, 0.025 04, and 0.000 627, respectively, which were the smallest compared to other models. The K-S test statistics of the non-parametric kernel density model of Pb was 0.125 0, which was the smallest amount, and RMSE and SSE were 0.028 42 and 0.000 807, respectively, which was a better result. The results showed that the non-parametric kernel density estimation model had good adaptability to the toxicity data of the two heavy metals and could obtain better simulation results; Pb concentration in the sediment was significantly higher than that of Hg, but the ecological risk level of Hg in the sediment was far higher than that of Pb.

     

  • loading
  • [1]
    曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018, 8(2):221-230.

    ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury,cadmium,lead and arsenic[J]. Journal of Environmental Engineering Technology, 2018, 8(2):221-230.
    [2]
    邓芰, 罗付香, 吴彦瑜, 等. 铅在环境中的形态迁移转化研究进展[C]// 2013中国环境科学学会学术年会论文集.北京:中国环境科学学会, 2013:1836-1841.
    [3]
    苏海磊, 郭飞, 魏源, 等. 中国保护水生生物的甲基汞水质标准制订初探[J]. 环境工程技术学报, 2020, 10(3):512-516.

    SU H L, GUO F, WEI Y, et al. Study on methylmercury water quality standards for aquatic life protection in China[J]. Journal of Environmental Engineering Technology, 2020, 10(3):512-516.
    [4]
    DAVUTLUOGLU O I, SECKΙN G, KALAT D G, et al. Speciation and ımplications of heavy metal content in surface sediments of Akyatan Lagoon-Turkey[J]. Desalination, 2010, 260(1/2/3):199-210.
    doi: 10.1016/j.desal.2010.04.031
    [5]
    YAN F, LIU C L, WEI B W. Evaluation of heavy metal pollution in the sediment of Poyang Lake based on stochastic geo-accumulation model (SGM)[J]. Science of the Total Environment, 2019, 659:1-6.
    doi: 10.1016/j.scitotenv.2018.12.311
    [6]
    DENG J, GUO P Y, ZHANG X Y, et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary,Fujian,China[J]. Ecotoxicology and Environmental Safety, 2019, 180:501-508.
    doi: 10.1016/j.ecoenv.2019.05.044
    [7]
    彭翠英, 李志良, 黄微, 等. 湘江中游衡阳-株洲段沉积物几种典型重金属的污染特征及其生态风险评价[J]. 南华大学学报(自然科学版), 2019, 33(4):89-96.

    PENG C Y, LI Z L, HUANG W, et al. Heavy metal pollution characteristics and potential ecological risk assessment of sediments in Hengyang-Zhuzhou section of Xiangjiang River[J]. Journal of University of South China (Science and Technology), 2019, 33(4):89-96.
    [8]
    盛维康, 侯青叶, 杨忠芳, 等. 湘江水系沉积物重金属元素分布特征及风险评价[J]. 中国环境科学, 2019, 39(5):2230-2240.

    SHENG W K, HOU Q Y, YANG Z F, et al. Distribution characteristics and ecological risk assessment of heavy metals in sediments from Xiang River[J]. China Environmental Science, 2019, 39(5):2230-2240.
    [9]
    付淑清, 韦振权, 袁少雄, 等. 珠江口沉积物与土壤的重金属特征及潜在生态危害评价[J]. 安全与环境学报, 2019, 19(2):600-606.

    FU S Q, WEI Z Q, YUAN S X, et al. Heavy metal pollution features and potential ecological risk assessment in sediments and soils of the Pearl River Estuary[J]. Journal of Safety and Environment, 2019, 19(2):600-606.
    [10]
    LAFABRIE C, PERGENT G, KANTIN R, et al. Trace metals assessment in water,sediment,mussel and seagrass species-validation of the use of Posidonia oceanica as a metal biomonitor[J]. Chemosphere, 2007, 68(11):2033-2039.
    doi: 10.1016/j.chemosphere.2007.02.039
    [11]
    BURTON J. Sediment quality criteria in use around the world[J]. Limnology, 2002, 3(2):65-76.
    doi: 10.1007/s102010200008
    [12]
    WHEELER J R, GRIST E P M, LEUNG K M Y, et al. Species sensitivity distributions:data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1/2/3/4/5/6/7/8/9/10/11/12):192-202.
    doi: 10.1016/S0025-326X(01)00327-7
    [13]
    TRAAS T, van de MEENT D, POSTHUMA L, et al. The potentially affected fraction as a measure of ecological risk[M]//Environmental and ecological risk assessment. Boca Raton,USA: CRC Press, 2001.
    [14]
    孔祥臻, 何伟, 秦宁, 等. 重金属对淡水生物生态风险的物种敏感性分布评估[J]. 中国环境科学, 2011, 31(9):1555-1562.

    KONG X Z, HE W, QIN N, et al. Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions[J]. China Environmental Science, 2011, 31(9):1555-1562.
    [15]
    祝凌燕, 邓保乐, 刘楠楠, 等. 应用相平衡分配法建立污染物的沉积物质量基准[J]. 环境科学研究, 2009, 22(7):762-767.

    ZHU L Y, DENG B L, LIU N N, et al. Application of equilibrium partitioning approach to derive sediment quality criteria for heavy metals[J]. Research of Environmental Sciences, 2009, 22(7):762-767.
    [16]
    WANG Y, FENG C L, LIU Y D, et al. Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals[J]. Environmental Pollution, 2017, 221:343-350.
    doi: 10.1016/j.envpol.2016.11.084
    [17]
    王颖, 冯承莲, 黄文贤, 等. 物种敏感度分布的非参数核密度估计模型[J]. 生态毒理学报, 2015, 10(1):215-224.

    WANG Y, FENG C L, HUANG W X, et al. Non-parametric kernel density estimation of developing species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2015, 10(1):215-224.
    [18]
    包新荣. 甘肃陇星锑业公司尾矿泄露事件对地表水影响时间分析研究[J]. 环境研究与检测, 2016, 29(2):7-8.
    [19]
    张晓健. 甘肃陇星锑污染事件和四川广元应急供水[J]. 给水排水, 2016, 52(10):9-20.

    ZHANG X J. Antimony pollution accident of Gansu Longxing enterprise and emergent water supply in Guangyuan City[J]. Water & Wastewater Engineering, 2016, 52(10):9-20.
    [20]
    吴丰昌, 冯承莲, 曹宇静, 等. 锌对淡水生物的毒性特征与水质基准的研究[J]. 生态毒理学报, 2011, 6(4):367-382.

    WU F C, FENG C L, CAO Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria[J]. Asian Journal of Ecotoxicology, 2011, 6(4):367-382.
    [21]
    吴自豪, 张彦峰, 陈心悦, 等. 根据SSD推导PFOS沉积物质量基准及其在生态风险评估中的应用[J]. 环境科学研究, 2019, 32(9):1448-1455.

    WU Z H, ZHANG Y F, CHEN X Y, et al. Derivation of sediment quality criteria of PFOS based on SSD and its application in ecological risk assessment[J]. Research of Environmental Sciences, 2019, 32(9):1448-1455.
    [22]
    霍文毅, 陈静生. 我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用[J]. 环境科学, 1997, 18(4):10-13.
    [23]
    PRAKASA RAO B L S. Estimation of a distribution function[M]//Nonparametric functional estimation. Amsterdam: Elsevier, 1983:392-436.
    [24]
    PROTHRO M G. Office of water policy and technical guidance on interpretation and implementation of aquatic life metals criteria[EB/OL].[2021-05-10].https://udspace.udel.edu/bitstream/handle/19716/1556/C&EE115.pdf?sequence=1 .
    [25]
    马牧源, 于一雷, 郭嘉, 等. 襄阳入江中小河流表层沉积物重金属污染特征及其潜在的生态风险评价[J]. 环境科学学报, 2019, 39(9):3144-3153.

    MA M Y, YU Y L, GUO J, et al. Heavy metal pollution characteristics and potential ecological risk assessment in surface sediments from small and medium rivers of the branches of Xiangyang section,Hanjiang River[J]. Acta Scientiae Circumstantiae, 2019, 39(9):3144-3153.
    [26]
    IKINGURA J R, AKAGI H, MUJUMBA J, et al. Environmental assessment of mercury dispersion,transformation and bioavailability in the Lake Victoria Goldfields,Tanzania[J]. Journal of Environmental Management, 2006, 81(2):167-173.
    doi: 10.1016/j.jenvman.2005.09.026
    [27]
    SRIRATTANA S, PIAOWAN K, IMTHIEANG T, et al. Assessment of lead (Pb) leakage from abandoned mine tailing ponds to Klity Creek,Kanchanaburi Province,Thailand[J/OL]. GeoHealth, 2021.doi: 10.1029/2020gh000252.
    doi: 10.1029/2020gh000252
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(258) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return