Volume 11 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
WANG Xiaolei, XUE Bin, YAO Shuchun, CHENG Longjuan, ZHU Hongwei, YIN Lu, ZHAO Zihan. Impact of lake areas on sediment accumulation rates and transport fluxes in Nanyi Lake during the period of 1985-2016[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1121-1130. doi: 10.12153/j.issn.1674-991X.20210010
Citation: WANG Xiaolei, XUE Bin, YAO Shuchun, CHENG Longjuan, ZHU Hongwei, YIN Lu, ZHAO Zihan. Impact of lake areas on sediment accumulation rates and transport fluxes in Nanyi Lake during the period of 1985-2016[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1121-1130. doi: 10.12153/j.issn.1674-991X.20210010

Impact of lake areas on sediment accumulation rates and transport fluxes in Nanyi Lake during the period of 1985-2016

doi: 10.12153/j.issn.1674-991X.20210010
More Information
  • Corresponding author: XUE Bin E-mail: bxue@niglas.ac.cn
  • Received Date: 2021-01-12
  • Publish Date: 2021-11-20
  • By testing the environmental radionuclides 210Pbex and137Cs in the sediment cores of Nanyi Lake in 2008, 2014 and 2015 supplemented by the mutually confirmed 210Pb CRS dating model and 137Cs dating time scale method, the sediment accumulation rates (SARs) over the past 100 years were quantitatively estimated. According to remote sensing visual interpretation method, the spatial and temporal variation of lake areas in Nanyi Lake during the period of 1985-2016 were obtained. Combined with the constructed lake sediment transport model, the annual amount of sediment transport fluxes (STFs) via the outflow river of Nanyi Lake was quantitatively estimated. Based on this, the correlation between lake SARs, STFs and lake area change was further analyzed. The results indicated that the distribution characteristics of 210Pbex and137Cs in the sediment core section of the same lake area in different years were similar, and the distribution of 210Pbex showed the trend of decreasing with increasing depth, while137Cs recorded the first sedimentation in 1954 and the maximum peak of sedimentation accumulation in 1963 at the depths of 24 and 16 cm, respectively. SARs of Nanyi Lake showed a fluctuating trend as a whole. High SARs appeared around the 1950s and a slow rising trend was observed since then, which maybe closely related to the dual impacts of natural and anthropogenic influences in different historical periods. Overall, a shrinking trend was found and the area decreased by 57.37 km2 over the past 31 years. Spatially, the declined areas were focused on the northwest, northeast and southeast regions of the lake. The excessive reclamation around the lake was the dominant factor influencing the declined lake areas over the past decades. The annual amount of STFs of Nanyi Lake was about 1 904.60 t/a. Both of SARs and STFs were greatly affected by the lake areas, and SARs showed an exponential increase trend but a linear decrease for STFs along with the expanding of lake areas.

     

  • loading
  • [1]
    沈吉. 末次盛冰期以来中国湖泊时空演变及驱动机制研究综述:来自湖泊沉积的证据[J]. 科学通报, 2012, 57(34):3228-3242.
    [2]
    KUEFNER W, HOFMANN A, OSSYSSEK S, et al. Composition of highly diverse diatom community shifts as response to climate change:a down-core study of 23 central European mountain lakes[J]. Ecological Indicators, 2020, 117:106590.
    doi: 10.1016/j.ecolind.2020.106590
    [3]
    HOPE G, van der KAARS S, FINN J, et al. Holocene environmental change at Inle Lake,Shan State,Myanmar,and its implications for the regional development of agriculture[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2019, 523:18-29.
    doi: 10.1016/j.palaeo.2019.03.018
    [4]
    JENNY J P, ANNEVILLE O, ARNAUD F, et al. Scientists’ warning to humanity:rapid degradation of the world’s large lakes[J]. Journal of Great Lakes Research, 2020, 46(4):686-702.
    doi: 10.1016/j.jglr.2020.05.006
    [5]
    HARTIG J H, KRANTZBERG G, ALSIP P. Thirty-five years of restoring Great Lakes areas of concern:gradual progress,hopeful future[J]. Journal of Great Lakes Research, 2020, 46(3):429-442.
    doi: 10.1016/j.jglr.2020.04.004
    [6]
    王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
    [7]
    姚书春. 长江下游青弋江水阳江流域湖泊环境演变[M]. 南京: 南京大学出版社, 2016.
    [8]
    ZHANG G Q, YAO T D, CHEN W F, et al. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 2019, 221:386-404.
    doi: 10.1016/j.rse.2018.11.038
    [9]
    杨则东, 陈有明, 黄燕, 等. 长江安徽段泥沙淤积及湖泊湿地围垦遥感调查与监测[J]. 国土资源遥感, 2010, 22(增刊1):82-86.

    YANG Z D, CHEN Y M, HUANG Y, et al. Remote sensing survey and monitoring of sedimentation and reclamation of lakes and wetlands along the Yangtze River in Anhui Province[J]. Remote Sensing for Land & Resources, 2010, 22(Suppl 1):82-86.
    [10]
    WANG Y H, YANG H, CHEN X, et al. Molecular biomarkers for sources of organic matter in lacustrine sediments in a subtropical lake in China[J]. Environmental Pollution, 2013, 176:284-291.
    doi: 10.1016/j.envpol.2013.01.041
    [11]
    HUANG Z H, XUE B, PANG Y. Simulation on stream flow and nutrient loadings in Gucheng Lake,Low Yangtze River Basin,based on SWAT model[J]. Quaternary International, 2009, 208(1/2):109-115.
    doi: 10.1016/j.quaint.2008.12.018
    [12]
    曾庆飞, 谷孝鸿, 毛志刚, 等. 固城湖及上下游河道富营养化和浮游藻类现状[J]. 中国环境科学, 2012, 32(8):1487-1494.

    ZENG Q F, GU X H, MAO Z G, et al. Assessment of trophic levels and phytoplankton variation in Guchenghu Lake and canal route[J]. China Environmental Science, 2012, 32(8):1487-1494.
    [13]
    李玉平. 南漪湖水质总磷超标成因及达标治理建议[J]. 安徽农学通报, 2020, 26(4):137-138.
    [14]
    徐小倩, 高飞, 仰晓宇, 等. 基于遥感数据反演的南漪湖水质时空变化监测[J]. 再生资源与循环经济, 2020, 13(4):31-34.

    XU X Q, GAO F, YANG X Y, et al. Temporal and spatial variation monitoring of water quality from Nanyi Lake based on remote sensing data inversion,China[J]. Recyclable Resources and Circular Economy, 2020, 13(4):31-34.
    [15]
    YAO S C, XUE B. Heavy metal records in the sediments of Nanyihu Lake,China:influencing factors and source identification[J]. Journal of Paleolimnology, 2014, 51(1):15-27.
    doi: 10.1007/s10933-013-9752-4
    [16]
    刘丰豪, 胡建芳, 王伟铭, 等. 8.0 ka BP以来长江中下游南漪湖沉积记录的正构烷烃及其单体碳同位素组成特征和古气候意义[J]. 地球化学, 2018, 47(1):89-101.

    LIU F H, HU J F, WANG W M, et al. Variations in the distribution and compound-specific stable carbon isotopic compositions of n-alkanes recorded in Lake Nanyi sediments from the Middle-Lower Yangtze Region since 8.0 ka BP and implications for the Paleoclimate[J]. Geochimica, 2018, 47(1):89-101.
    [17]
    XUE B, YAO S C. Recent sedimentation rates in lakes in Lower Yangtze River Basin[J]. Quaternary International, 2011, 244(2):248-253.
    doi: 10.1016/j.quaint.2011.01.003
    [18]
    周世术, 王成德. 青弋江、水阳江流域水旱灾害成因及治理措施的探讨[J]. 安徽师大学报(自然科学版), 1991, 14(3):85-90.

    ZHOU S S, WANG C D. An analysis on the reason and management of the disters of water and drought in the Qingyijiang and Shuiyangjing Basins[J]. Journal of Anhui Normal University (Natural Science), 1991, 14(3):85-90.
    [19]
    孙风贤. 水阳江中上游洪灾频繁的原因及其对策[J]. 中国地质灾害与防治学报, 1993, 4:81-85.
    [20]
    陈立婧, 王武, 孙家平, 等. 南漪湖建闸前后夏季浮游植物群落结构的变化[J]. 水利渔业, 2008, 29(1):78-79,104.
    [21]
    彭水秀, 张坤, 李晓明, 等. 南漪湖春夏季节叶绿素a浓度变化及其与环境因子间的关系[J]. 淮北师范大学学报(自然科学版), 2016, 37(1):57-61.

    PENG S X, ZHANG K, LI X M, et al. The variations of chlorophyll-a concentration in spring and summer and its relationship to environmental factors in Lake Nanyi[J]. Journal of Huaibei Normal University (Natural Science Edition), 2016, 37(1):57-61.
    [22]
    胡锦婷, 张坤, 何平, 等. 南漪湖沉积物枝角类卵鞍密度的垂直变化及其与营养盐的关系[J]. 应用生态学报, 2019, 30(1):309-315.

    HU J T, ZHANG K, HE P, et al. Vertical change of cladoceran ephippial densities in the sediments of Lake Nanyi and its correlation with the nutrients[J]. Chinese Journal of Applied Ecology, 2019, 30(1):309-315.
    [23]
    LIU W Z, YAO L, JIANG X L, et al. Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities[J]. Science of the Total Environment, 2018, 616/617:978-987.
    doi: 10.1016/j.scitotenv.2017.10.221
    [24]
    师长兴. 黄河河口泥沙扩散规律分析:以钓口河流路为例[J]. 地理科学, 2009, 29(1):83-88.

    SHI C X. Analysis of sediment dispersal of the Huanghe(Yellow) River mouth:a case of Diaokouhe Lobe[J]. Scientia Geographica Sinica, 2009, 29(1):83-88.
    [25]
    宋振杰, 毕乃双, 吴晓, 等. 2010 年黄河调水调沙期间河口泥沙输运过程的数值模拟[J]. 海洋湖沼通报, 2018(1):34-45.

    SONG Z J, BI N S, WU X, et al. Numerical simulation on the process of sediment transport off the Yellow River mouth during the water-sediment regulation scheme in 2010[J]. Transactions of Oceanology and Limnology, 2018(1):34-45.
    [26]
    叶志伟. 新水沙条件下长江下游东北水道航道演变趋势分析[J]. 水运工程, 2019(10):141-147.

    YE Z W. Analysis of evolution trend of Dongbei waterway in middle reach of the Yangtze River under new water and sediment conditions[J]. Port & Waterway Engineering, 2019(10):141-147.
    [27]
    WANG X L, YANG H, GU Z J, et al. A century of change in sediment accumulation and trophic status in Lake Fuxian,a deep plateau lake of Southwestern China[J]. Journal of Soils and Sediments, 2018, 18(3):1133-1146.
    doi: 10.1007/s11368-017-1871-5
    [28]
    APPLEBY P G. Chronostratigraphic techniques in recent sediments[M]//LAST W M,SMOL J P. Tracking environmental change using lake sediments. Dordrecht: Springer,Dordrecht, 2001:171-203.
    [29]
    CHEN J A, WAN G J, ZHANG D D, et al. Environmental records of lacustrine sediments in different time scales:sediment grain size as an example[J]. Science in China Series D:Earth Sciences, 2004, 47(10):954-960.
    doi: 10.1360/03yd0160
    [30]
    张恒, 陶胜利, 唐志尧, 等. 近30年京津冀地区湖泊面积的变化[J]. 北京大学学报(自然科学版), 2020, 56(2):324-330.

    ZHANG H, TAO S L, TANG Z Y, et al. Lake area changes in Jing-Jin-Ji region in recent 30 years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(2):324-330.
    [31]
    李浩杰, 种丹, 范硕, 等. 近三十年云南九大高原湖泊水面面积遥感变化监测[J]. 长江流域资源与环境, 2016, 25(增刊1):32-37.

    LI H J, CHONG D, FAN S, et al. Remote sensing monitoring of the nine plateau lakes’ surface area in Yunnan in recent thirty years[J]. Resources and Environment in the Yangtze Basin, 2016, 25(Suppl 1):32-37.
    [32]
    李宁, 刘吉平, 王宗明. 2000—2010年东北地区湖泊动态变化及驱动力分析[J]. 湖泊科学, 2014, 26(4):545-551.
    doi: 10.18307/2014.0408

    LI N, LIU J P, WANG Z M. Dynamics and driving force of lake changes in northeast China during 2000-2010[J]. Journal of Lake Sciences, 2014, 26(4):545-551. doi: 10.18307/2014.0408
    [33]
    李新国, 江南, 朱晓华, 等. 近三十年来太湖流域主要湖泊的水域变化研究[J]. 海洋湖沼通报, 2006(4):17-24.

    LI X G, JIANG N, ZHU X H, et al. Study on lake surface area change of major lakes in the Taihu Basin during the past 30 years[J]. Transactions of Oceanology and Limnology, 2006(4):17-24.
    [34]
    娄径, 解华明, 王俊. 皖江地区湖泊水域面积变化遥感监测[J]. 资源环境与工程, 2016, 30(5):792-796.

    LOU J, XIE H M, WANG J. Study on lakes area variations in Wanjiang Region using remote sensing monitoring[J]. Resources Environment & Engineering, 2016, 30(5):792-796.
    [35]
    苏小亚, 卢剑波. 近40年千岛湖库区水面面积的时空动态分析[J]. 科技通报, 2017, 33(9):37-41.

    SU X Y, LU J B. Spatial and temporal dynamic analysis of water area in Thousand-island Lake Reservoir area in recent 40 years[J]. Bulletin of Science and Technology, 2017, 33(9):37-41.
    [36]
    徐世泽. 南漪湖围网养殖大规格河蟹技术[J]. 中国水产, 2007(9):44-45.
    [37]
    王小雷. 南漪湖流域土壤侵蚀与泥沙沉积定量示踪研究[R]. 南京:中国科学院南京地理与湖泊研究所, 2019:31-34.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(329) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return