Volume 11 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Xuzhi QIN, Hanwen ZHENG, Ruicheng HE, Wenjuan DING, Jun ZHANG, Guannan CUI, Peili SHI, Yunfeng XIE. Optimal grid scale and sampling design optimization method for heavy metal pollution investigation in farmland soil[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 861-868. doi: 10.12153/j.issn.1674-991X.20200303
Citation: Xuzhi QIN, Hanwen ZHENG, Ruicheng HE, Wenjuan DING, Jun ZHANG, Guannan CUI, Peili SHI, Yunfeng XIE. Optimal grid scale and sampling design optimization method for heavy metal pollution investigation in farmland soil[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 861-868. doi: 10.12153/j.issn.1674-991X.20200303

Optimal grid scale and sampling design optimization method for heavy metal pollution investigation in farmland soil

doi: 10.12153/j.issn.1674-991X.20200303
More Information
  • Corresponding author: Yunfeng XIE E-mail: xieyf@craes.org.cn
  • Received Date: 2020-12-29
  • Publish Date: 2021-09-20
  • In order to explore the optimal grid scale and sampling design optimization method for soil heavy metal pollution investigation, soil samples were collected and analyzed in farmland near an old industrial park in central and southern China. Four meshes of different scales, including 70 m×70 m, 100 m×100 m, 160 m×160 m and 200 m×200 m, were constructed, and the estimation accuracy of Cd polluted spatial location in soil was analyzed and verified by estimation test of Matheron moment estimation and geostatistical method. The results indicated that the estimation accuracy of polluted spatial location was similar for 70 m×70 m and 100 m×100 m grid, and higher than 160 m×160 m and 200 m×200 m grid. By encrypting the sampling points on the uncertain region of 100 m×100 m grid, the estimation accuracy of polluted spatial location increased from 78.89% to 86.25%, and the number of investigation samples decreased by 35% for 70 m×70 m grid, not only reducing the cost of sampling and testing, but also improving estimation accuracy of polluted spatial location effectively.

     

  • loading
  • [1]
    谢云峰, 曹云者, 杜晓明, 等. 土壤污染调查加密布点优化方法构建及验证[J]. 环境科学学报, 2016, 36(3):981-989.

    XIE Y F, CAO Y Z, DU X M, et al. Development and validation of a sampling design optimization procedure for detailed soil pollution investigation[J]. Acta Scientiae Circumstantiae, 2016, 36(3):981-989.
    [2]
    谢云峰, 曹云者, 张大定, 等. 污染场地环境风险的工程控制技术及其应用[J]. 环境工程技术学报, 2012, 2(1):51-59.

    XIE Y F, CAO Y Z, ZHANG D D, et al. Engineering control technologies and its application in the risk management for contaminated sites[J]. Journal of Environmental Engineering Technology, 2012, 2(1):51-59.
    [3]
    吴春发, 吴嘉平, 骆永明, 等. 冶炼厂周边土壤重金属污染范围的界定与不确定性分析[J]. 土壤学报, 2009, 46(6):1006-1012.

    WU C F, WU J P, LUO Y M, et al. Identification and uncertainty analysis of scope of heavy metal pollution in the vicinity of secondary copper smelteries[J]. Acta Pedologica Sinica, 2009, 46(6):1006-1012.
    [4]
    JUANG K W, LEE D Y. A comparison of three Kriging methods using auxiliary variables in heavy-metal contaminated soils[J]. Journal of Environmental Quality, 1998, 27(2):355.
    [5]
    JENKINS T F, GRANT C L, BRAR G S, et al. Sampling error associated with collection and analysis of soil samples at TNT-contaminated sites[J]. Field Analytical Chemistry & Technology, 1997, 1(3):151-163.
    [6]
    ARGYRAKI A, RAMSEY M H, POTTS J P. Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land[J]. Analyst, 1997, 122(8):743-749.
    doi: 10.1039/a700746i
    [7]
    WEBSTER R, LARK R M. Field sampling for environmental science and management[M]. London: Routledge, 2013:162-200.
    [8]
    RAMSEY M H. Measurement uncertainty arising from sampling:implications for the objectives of geoanalysis[J]. Analyst, 1997, 122(11):1255-1260.
    doi: 10.1039/a704995a
    [9]
    MUNTAU H, REHNERT A, DESAULES A, et al. Analytical aspects of the CEEM soil project[J]. Science of the Total Environment, 2001, 264(1/2):27-50.
    doi: 10.1016/S0048-9697(00)00610-0
    [10]
    姜成晟, 王劲峰, 曹志冬. 地理空间抽样理论研究综述[J]. 地理学报, 2009, 64(3):368-380.

    JIANG C S, WANG J F, CAO Z D. A review of geo-spatial sampling theory[J]. Acta Geographica Sinica, 2009, 64(3):368-380.
    [11]
    THEOCHAROPOULOS S P, WAGNER G, SPRENGART J, et al. European soil sampling guidelines for soil pollution studies[J]. Science of the Total Environment, 2001, 264(1/2):51-62.
    doi: 10.1016/S0048-9697(00)00611-2
    [12]
    UK Environment Agency. Secondary model procedure for the development of appropriate soil sampling strategies for land contamination[R]. Birmingham: Monitor Environmental Consultants Ltd, 2000:11-25.
    [13]
    BRUS D J, de GRUIJTER J J. Random sampling or geostatistical modelling:choosing between design-based and model-based sampling strategies for soil (with discussion)[J]. Geoderma, 1997, 80(1/2):1-44.
    doi: 10.1016/S0016-7061(97)00072-4
    [14]
    HAINING R P. Spatial data analysis: theory and practice[M]. Cambridge: Cambridge University, 2003:77-78.
    [15]
    SÄRNDAL C E, SWENSSON B, WRETMAN J. Model assisted survey sampling[M]. New York: Springer-Verlag, 1992.
    [16]
    DEFEO O, RUEDA M. Spatial structure,sampling design and abundance estimates in sandy beach macroinfauna:some warnings and new perspectives[J]. Marine Biology, 2002, 140(6):1215-1225.
    doi: 10.1007/s00227-002-0783-z
    [17]
    FLORES L A, MARTINEZ L I, FERRER C M. Systematic sample design for the estimation of spatial means[J]. Environmetrics, 2003, 14(1):45-61.
    doi: 10.1002/env.v14:1
    [18]
    LARK R M, CULLIS B R. Model-based analysis using REML for inference from systematically sampled data on soil[J]. European Journal of Soil Science, 2004, 55(4):799-813.
    doi: 10.1111/j.1365-2389.2004.00637.x
    [19]
    LITTLE R J. To model or not to model:competing modes of inference for finite population sampling[J]. Journal of the American Statistical Association, 2004, 99:546-556.
    doi: 10.1198/016214504000000467
    [20]
    PAPRITZ A, WEBSTER R. Estimating temporal change in soil monitoring:sampling from simulated fields[J]. European Journal of Soil Science, 1995, 46(1):13-27.
    doi: 10.1111/ejs.1995.46.issue-1
    [21]
    LARK R M, BELLAMY P H, RAWLINS B G. Spatio-temporal variability of some metal concentrations in the soil of eastern England,and implications for soil monitoring[J]. Geoderma, 2006, 133(3/4):363-379.
    doi: 10.1016/j.geoderma.2005.08.009
    [22]
    HUBER S, SYED B, FREUDENSCHUB A, et al. Proposal for a European soil monitoring and assessment framework[R]. Copenhagen:European Environmental Agency, 2001:5-6.
    [23]
    HUBER S, PROKOP, ARROUAYS D, et al. Environmental assessment of soil for monitoring:volume Ⅰ indicators & criteria[R]. Luxembourg: Office for Official Publications of the European Communities, 2008:45-48.
    [24]
    ARROUAYS D, MORAN X, SABY N P A, et al. Environmental assessment of soil for monitoring:volume Ⅱ.a inventory & monitoring[R]. Luxembourg:Office for Official Publications of the European Communities, 2008:29-30.
    [25]
    谢志宜, 罗小玲, 郭庆荣, 等. 耕地土壤环境质量监测网最优网格尺度识别研究:以珠三角耕地土壤镉为例[J]. 生态环境学报, 2015, 24(9):1519-1525.

    XIE Z Y, LUO X L, GUO Q R, et al. Identify optimal grid scale on soil environmental quality monitoring network as an example of cultivated soil cadmium in the Pearl River Delta[J]. Ecology and Environmental Sciences, 2015, 24(9):1519-1525.
    [26]
    刘英对. 珠江三角洲主要城市效区农业土壤的重金属研究[D]. 广州: 中山大学, 1999.
    [27]
    欧阳婷萍. 珠江三角洲城市化发展的环境影响评价研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所),2005.
    [28]
    万洪富, 郭治兴, 邓南荣. 广东省土壤资源及作物适宜性图谱[M]. 广州: 广东科技出版社, 2005.
    [29]
    杨国义, 张天彬, 万洪富, 等. 广东省典型区域农业土壤中重金属污染空间差异及原因分析[J]. 土壤, 2007, 39(3):387-392.

    YANG G Y, ZHANG T B, WAN H F, et al. Spatial distribution and sources of heavy metal pollution of agricultural soils in the typical areas of Guangdong Province,China[J]. Soils, 2007, 39(3):387-392.
    [30]
    兰鹏鹏, 万大娟, 董法秀, 等. 冶炼厂遗留场地土壤重金属污染分析及健康风险评价[J]. 湖南农业科学, 2019(4):59-63.

    LAN P P, WAN D J, DONG F X, et al. Pollution analysis and health risk assessment of heavy metal in a smelter site[J]. Hunan Agricultural Sciences, 2019(4):59-63.
    [31]
    MARCHANT B P, MCBRATNEY A B, LARK R M, et al. Optimized multi-phase sampling for soil remediation surveys[J]. Spatial Statistics, 2013(4):1-13.
    [32]
    RAMSEY M H, TAYLOR P D, LEE J C. Optimized contaminated land investigation at minimum overall cost to achieve fitness-for-purpose[J]. Journal of Environmental Monitoring, 2002, 4(5):809-814.
    doi: 10.1039/b203096a
    [33]
    张大定, 曹云者, 汪群慧, 等. 土壤理化性质对污染场地环境风险不确定性的影响[J]. 环境科学研究, 2012, 25(5):526-532.

    ZHANG D D, CAO Y Z, WANG Q H, et al. Effects of soil physical-chemical properties on risk uncertainty in a contaminated site[J]. Research of Environmental Sciences, 2012, 25(5):526-532.
    [34]
    李如忠, 石勇. 巢湖塘西河河口湿地重金属污染风险不确定性评价[J]. 环境科学研究, 2009, 22(10):1156-1163.

    LI R Z, SHI Y. Uncertainty assessment of heavy metal pollution risk in the estuarine wetland of Tangxi River in Chaohu Lake[J]. Research of Environmental Sciences, 2009, 22(10):1156-1163.
    [35]
    胡克林, 张凤荣, 吕贻忠, 等. 北京市大兴区土壤重金属含量的空间分布特征[J]. 环境科学学报, 2004, 24(3):463-468.

    HU K L, ZHANG F R, LÜ D Z, et al. Spatial distribution of concentrations of soil heavy metals in Daxing County,Beijing[J]. Acta Scientiae Circumstantiae, 2004, 24(3):463-468.
    [36]
    郑一, 王学军, 李本纲, 等. 天津地区表层土壤多环芳烃含量的中尺度空间结构特征[J]. 环境科学学报, 2003, 23(3):311-316.

    ZHENG Y, WANG X J, LI B G, et al. Medium scale spatial structures of polycyclic aromatic hydrocarbons contents in the topsoil of Tianjin Area[J]. Acta Scientiae Circumstantiae, 2003, 23(3):311-316.
    [37]
    杜平, 张跃进, 杜晓明, 等. 某锌厂周围表层土壤及典型剖面镉污染特征[J]. 环境科学研究, 2006, 19(5):113-117.

    DU P, ZHANG Y J, DU X M, et al. Studies on cadmium contamination of topsoil and soil profiles around a zinc plant[J]. Research of Environmental Sciences, 2006, 19(5):113-117.
    [38]
    刘泽宇, 赵胜豪, 廖朋辉, 等. 某工业场地砷污染的加密布点优化与精度对比分析[J]. 环境科学学报, 2020, 40(9):3415-3421.

    LIU Z Y, ZHAO S H, LIAO P H, et al. Optimization and accuracy comparative analysis of sampling methods in an arsenic pollution site survey[J]. Acta Scientiae Circumstantiae, 2020, 40(9):3415-3421.
    [39]
    李佳燕. 基于模拟退火算法的矿区复垦土壤监测样点布设研究[D]. 北京: 中国地质大学, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(469) PDF Downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return