Volume 11 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
XI Haojun, LIU Beibei, HUANG Yajuan, MA Xueqing, DENG Yajing, LIU Fuyu, ZHU Hongtao, SUN Dezhi. Estimation and sources apportionment of non-point source nitrogen and phosphorus loads in Beishahe sub-catchment of Beijing[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 258-266. doi: 10.12153/j.issn.1674-991X.20200076
Citation: XI Haojun, LIU Beibei, HUANG Yajuan, MA Xueqing, DENG Yajing, LIU Fuyu, ZHU Hongtao, SUN Dezhi. Estimation and sources apportionment of non-point source nitrogen and phosphorus loads in Beishahe sub-catchment of Beijing[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 258-266. doi: 10.12153/j.issn.1674-991X.20200076

Estimation and sources apportionment of non-point source nitrogen and phosphorus loads in Beishahe sub-catchment of Beijing

doi: 10.12153/j.issn.1674-991X.20200076
More Information
  • Corresponding author: ZHU Hongtao E-mail: zhuhongtao@bjfu.edu.cn
  • Received Date: 2020-03-31
  • Publish Date: 2021-03-20
  • Beishahe sub-catchment of Beijing was studied for the source apportionment of non-point source (NPS) pollution. The NPS pollutants in this area were generalized into two types: the dissolved and the adsorbed. The dissolved and adsorbed nitrogen and phosphorus NPS pollution loads were estimated based on the precipitation runoff model (soil conservation service curve number, SCS-CN), soil erosion model (revised universal soil loss equation, RUSLE), and the pollutant output load model empirical equation. The spatial distribution characteristics of nitrogen and phosphorus loads produced by different land use types were also analyzed. The simulation results showed that the average annual load of total nitrogen (TN) in Beishahe sub-catchment was 0.625 t/(km2 ·a), of which the dissolved nitrogen was 0.190 t/(km2 ·a) and the adsorbed nitrogen was 0.435 t/(km2 ·a); the average pollution load of total phosphorus (TP) in Beishahe sub-catchment was 0.118 t/(km2 ·a), of which the dissolved phosphorus was 0.011 t/(km2 ·a) and the adsorbed phosphorus was 0.107 t/(km2 ·a). The rural area produced the most TN of 0.855 t/(km2 ·a) among all different land use types, followed by the forest land (0.713 t/(km2 ·a)) and the unused land (0.619 t/(km2 ·a)). For TP, the land use types with highest annual pollution load was the grassland (0.238 t/(km2 ·a)), the forest land (0.126 t/(km2 ·a)) and the unused land (0.115 t/(km2 ·a)). Generally speaking, the losses of nitrogen and phosphorus were mainly in the form of adsorbed in the Beishahe sub-catchment. Therefore, controlling of the soil erosion, water and soil loss should be highlighted for the reduction of the loads of adsorbed nitrogen and phosphorus in Beishahe sub-catchment.

     

  • loading
  • [1]
    北京市人民政府. 北京市城乡结合部建设三年行动计划(2015—2017年)[A/OL]. (2015-12-03)[2020-03-31]. http://www.beijing.gov.cn/gongkai/guihua/wngh/qtgh/201907/t20190701_100190.html.
    [2]
    杨进怀, 吴敬东, 叶芝菡, 等. 生态清洁小流域在北京生态治理中的地位与作用:以北运河流域为例[J]. 中国水利, 2014(10):9-12.

    YANG J H, WU J D, YE Z H, et al. Role and function of ecologic and clean-type small watershed for ecological restoration in Beijing:case study of the North Canal Basin[J]. China Water Resources, 2014(10):9-12.
    [3]
    陈岩, 赵琰鑫, 赵越, 等. 基于SWAT模型的江西八里湖流域氮磷污染负荷研究[J]. 北京大学学报(自然科学版), 2019,55(6):1112-1118.

    CHEN Y, ZHAO Y X, ZHAO Y, et al. Estimating nitrogen and phosphorus pollution load in Bali Lake Basin of Jiangxi Province based on SWAT Model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019,55(6):1112-1118.
    [4]
    郝改瑞, 李家科, 李怀恩, 等. 流域非点源污染模型及不确定分析方法研究进展[J]. 水力发电学报, 2018,37(12):54-64.

    HAO G R, LI J K, LI H E, et al. Advances in research of watershed non-point source pollution models and uncertainty analysis methods[J]. Journal of Hydroelectric Engineering, 2018,37(12):54-64.
    [5]
    吴敬东, 杨胜天, 叶芝菡, 等. 小流域非点源污染模拟与生态修复影响评价[J]. 水土保持通报, 2019,39(4):236-243.

    WU J D, YANG S T, YE Z H, et al. Non-point source pollution simulation and eco-remediation impact assessment in small watershed[J]. Bulletin of Soil and Water Conservation, 2019,39(4):236-243.
    [6]
    ABDELWAHAB O M M, RICCI G F, de GIROLAMO A M, et al. Modelling soil erosion in a Mediterranean Watershed:comparison between SWAT and AnnAGNPS models[J]. Environmental Research, 2018,166:363-376.
    doi: 10.1016/j.envres.2018.06.029 pmid: 29935449
    [7]
    MENGISTU A G, van RENSBURG L D, WOYESSA Y E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa[J]. Journal of Hydrology:Regional Studies, 2019,25:100621.
    [8]
    GORGOGLIONE A, GIOIA A, IACOBELLIS V, et al. A rationale for pollutograph evaluation in ungauged areas,using daily rainfall patterns:case studies of the Apulian Region in Southern Italy[J]. Applied and Environmental Soil Science, 2016,2016:1-16.
    [9]
    李丽华, 李强坤. 农业非点源污染研究进展和趋势[J]. 农业资源与环境学报, 2014,31(1):13-22.

    LI L H, LI Q K. The progress and trends of agricultural non-point source pollution research[J]. Journal of Agricultural Resources and Environment, 2014,31(1):13-22.
    [10]
    何杨洋, 王晓燕, 段淑怀. 密云水库上游流域径流曲线模型的参数修订[J]. 水土保持学报, 2016,30(6):134-138.

    HE Y Y, WANG X Y, DUAN S H. Revision of CN value and initial abstraction ratio in the SCS-CN model in upper reaches of Miyun Reservoir[J]. Journal of Soil and Water Conservation, 2016,30(6):134-138.
    [11]
    周翠宁, 任树梅, 闫美俊. 曲线数值法(SCS模型)在北京温榆河流域降雨-径流关系中的应用研究[J]. 农业工程学报, 2008,24(3):87-90.

    ZHOU C N, REN S M, YAN M J. Application of SCS model to simulate rainfall-runoff relationship in Wenyu River Basin in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(3):87-90.
    [12]
    GANASRI B P, RAMESH H. Assessment of soil erosion by RUSLE model using remote sensing and GIS:a case study of Nethravathi Basin[J]. Geoscience Frontiers, 2016,7(6):953-961.
    [13]
    WILLIAMS J R. The erosion-productivity impact calculator (EPIC) model:a case history[J]. Philosophical Transactions B, 1990,329:421-428.
    [14]
    AJMAL M, MOON G W, AHN J H, et al. Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean Watersheds[J]. Journal of Hydro-Environment Research, 2015,9(4):592-603.
    [15]
    蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000,14(2):19-24.

    CAI C F, DING S W, SHI Z H, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 2000,14(2):19-24.
    [16]
    CHEN X K, LIU X B, PENG W Q, et al. Non-point source nitrogen and phosphorus assessment and management plan with an improved method in data-poor regions[J]. Water, 2018,10(1):17.
    [17]
    黄金良, 洪华生, 张珞平, 等. 基于GIS的九龙江流域农业非点源氮磷负荷估算研究[J]. 农业环境科学学报, 2004,23(5):866-871.

    HUANG J L, HONG H S, ZHANG L P, et al. Nitrogen and phosphorus loading of agricultural non-point sources in Jiulong River Watershed based on GIS[J]. Journal of Agro-Environment Science, 2004,23(5):866-871.
    [18]
    王晓燕, 王晓峰, 汪清平, 等. 北京密云水库小流域非点源污染负荷估算[J]. 地理科学, 2004,24(2):227-231.

    WANG X Y, WANG X F, WANG Q P, et al. Loss of non-point source pollutants from Shixia small watershed,Miyun Reservoir,Beijing[J]. Scientia Geographica Sinica, 2004,24(2):227-231.
    [19]
    温海广, 周劲风, 李明, 等. 流溪河水库流域非点源溶解态氮磷污染负荷估算[J]. 环境科学研究, 2011,24(4):387-394.

    WEN H G, ZHOU J F, LI M, et al. Estimation of non-point soluble nitrogen and phosphorus pollutant loads in the drainage area of Liuxi River Reservoir[J]. Research of Environmental Sciences, 2011,24(4):387-394.
    [20]
    刘晓南, 吴志峰, 程炯, 等. 珠江三角洲典型流域颗粒态氮磷负荷估算研究[J]. 农业环境科学学报, 2008,27(4):1432-1436.

    LIU X N, WU Z F, CHENG J, et al. Estimation of the loads of particulate nitrogen and phosphorus in typical drainage area of Pearl River Delta[J]. Journal of Agro-Environment Science, 2008,27(4):1432-1436.
    [21]
    耿润哲, 王晓燕, 吴在兴, 等. 北运河下游不同土地利用非点源污染负荷估算[J]. 农业环境科学学报, 2012,31(7):1412-1420.

    GENG R Z, WANG X Y, WU Z X, et al. Non-point source pollution loads from the different land use types in the downstream areas of the Beiyunhe River Basin,China[J]. Journal of Agro-Environment Science, 2012,31(7):1412-1420.
    [22]
    欧阳威, 王玮, 郝芳华, 等. 北京城区不同下垫面降雨径流产污特征分析[J]. 中国环境科学, 2010,30(9):1249-1256.

    OUYANG W, WANG W, HAO F H, et al. Pollution characterization of urban stormwater runoff on different underlying surface conditions[J]. China Environmental Science, 2010,30(9):1249-1256.
    [23]
    王晓燕, 王一峋, 王晓峰, 等. 密云水库小流域土地利用方式与氮磷流失规律[J]. 环境科学研究, 2003,16(1):30-33.

    WANG X Y, WANG Y X, WANG X F, et al. The character of nutrient loss and land use in a small watershed of Miyun Reservoir[J]. Research of Environmental Sciences, 2003,16(1):30-33.
    [24]
    史志华, 蔡崇法, 丁树文, 等. 基于GIS的汉江中下游农业面源氮磷负荷研究[J]. 环境科学学报, 2002,22(4):473-477.

    SHI Z H, CAI C F, DING S W, et al. Research on nitrogen and phosphorus load of agricultural non-point sources in middle and lower reaches of Hanjiang River based on GIS[J]. Acta Scientiae Circumstantiae, 2002,22(4):473-477.
    [25]
    龚世飞, 丁武汉, 肖能武, 等. 丹江口水库核心水源区典型流域农业面源污染特征[J]. 农业环境科学学报, 2019,38(12):2816-2825.

    GONG S F, DING W H, XIAO N W, et al. Characteristics of surface runoff and agricultural non-point source pollution in the core water source area of the Danjiangkou Reservoir[J]. Journal of Agro-Environment Science, 2019,38(12):2816-2825.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(505) PDF Downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return