Volume 11 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
HE Hang, ZHAO Jian, SUN Ning, LI Jiang. Research progress of aerobic granular membrane bio-reactor technologies for wastewater treatment[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 163-172. doi: 10.12153/j.issn.1674-991X.20190208
Citation: HE Hang, ZHAO Jian, SUN Ning, LI Jiang. Research progress of aerobic granular membrane bio-reactor technologies for wastewater treatment[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 163-172. doi: 10.12153/j.issn.1674-991X.20190208

Research progress of aerobic granular membrane bio-reactor technologies for wastewater treatment

doi: 10.12153/j.issn.1674-991X.20190208
More Information
  • Corresponding author: LI Jiang E-mail: jli82@gzu.edu.cn
  • Received Date: 2019-12-10
  • Rev Recd Date: 2020-07-29
  • Publish Date: 2021-01-20
  • With the introduction of stricter pollutant discharge standards, the development of compact, efficient and less energy-consuming wastewater treatment technologies has become an urgent need in the field of water treatment. The present status of aerobic granular membrane bioreactor (AGMBR) technology in water treatment at home and abroad in recent years was reviewed. The compositions and pollutant removal performances of various AGMBR reaction systems were briefly introduced. The characteristics of membrane fouling of aerobic particles in membrane biofilm were systematically summarized, and AGMBR method was superior to the traditional MBR method in reducing membrane fouling, but it also had the problem of irreversible pollution. The factors affecting the stability of aerobic particles were analyzed from four aspects, i.e. substrate and feeding mode, quorum sensing, extracellular polymer substances and metal ions. The application prospect of AGMBR method was also prospected.

     

  • loading
  • [1]
    白海龙, 陈冠儒, 储开庆. MBR超滤柔性平板膜工艺在国内城镇污水处理领域的应用[J]. 中国建设信息, 2019(1):29-33.
    [2]
    YANG S F, TAY J H, LIU Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater[J]. Journal of Biotechnology, 2003,106(1):77-86.
    pmid: 14636712
    [3]
    姚源, 竺建荣, 唐敏, 等. 好氧颗粒污泥技术处理乡镇污水应用[J]. 环境科学研究, 2018,31(2):379-388.

    YAO Y, ZHU J R, TANG M, et al. Application of aerobic granular sludge technology on treatment of villages and towns sewage[J]. Research of Environmental Sciences, 2018,31(2):379-388.
    [4]
    ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge: recent advances[J]. Biotechnology Advances, 2008,26(5):411-423.
    doi: 10.1016/j.biotechadv.2008.05.002 pmid: 18573633
    [5]
    SHOW K Y, LEE D J, TAY J H. Aerobic granulation: advances and challenges[J]. Applied Biochemistry and Biotechnology, 2012,167(6):1622-1640.
    doi: 10.1007/s12010-012-9609-8 pmid: 22383048
    [6]
    POL L W H, LOPES S I D C, LETTINGA G, et al. Anaerobic sludge granulation[J]. Water Research, 2004,38(6):1376-1389.
    pmid: 15016515
    [7]
    QURESHI B. Casebook on the termination of life-sustaining treatment in the care of the dying[J]. Journal of Medical Ethics, 1989,15(4):219.
    [8]
    MISHIMA K, NAKAMURA M. Self-immobilization of aerobic activated sludge:a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Science & Technology, 1991,23:981-990.
    [9]
    ADAV S S, CHEN M Y, LEE D J, et al. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis[J]. Biotechnology & Bioengineering, 2007,96(5):844-852.
    pmid: 17001631
    [10]
    LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004,22(7):533-563.
    doi: 10.1016/j.biotechadv.2004.05.001 pmid: 15262316
    [11]
    COMA M, VERAWATY M, PIJUAN M, et al. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J]. Bioresource Technology, 2012,103(1):101-108.
    doi: 10.1016/j.biortech.2011.10.014 pmid: 22050837
    [12]
    MORALES N, FIGUEROA M, FRA-VÁZQUEZ A, et al. Operation of an aerobic granular pilot scale SBR plant to treat swine slurry[J]. Process Biochemistry, 2013,48(8):1216-1221.
    [13]
    PRONK M, de KREUK M K, de BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015,84:207-217.
    doi: 10.1016/j.watres.2015.07.011 pmid: 26233660
    [14]
    LI X, GAO F, HUA Z, et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling[J]. Separation & Purification Technology, 2005,46(1/2):19-25.
    [15]
    TAY J H, YANG P, ZHUANG W Q, et al. Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor[J]. Journal of Membrane Science, 2007,304(1/2):24-32.
    [16]
    TU X, ZHANG S, XU L, et al. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge[J]. Desalination, 2010,261(1/2):191-196.
    [17]
    WANG Y, ZHONG C, HUANG D, et al. The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux[J]. Bioresource Technology, 2013,136:488-495.
    doi: 10.1016/j.biortech.2013.03.066 pmid: 23567721
    [18]
    SÁNCHEZ SÁNCHEZ A, GARRIDO J M, MÉNDEZ R. A comparative study of tertiary membrane filtration of industrial wastewater treated in a granular and a flocculent sludge SBR[J]. Desalination, 2010,250(2):810-814.
    [19]
    THANH B X, VISVANATHAN C, MATHIEU SPÉRANDIO, et al. Fouling characterization in aerobic granulation coupled baffled membrane separation unit[J]. Journal of Membrane Science, 2008,318(1/2):334-339.
    [20]
    THANH B X, VISVANATHAN C, BEN AIM R. Fouling characterization and nitrogen removal in a batch granulation membrane bioreactor[J]. International Biodeterioration & Biodegradation, 2013,85:491-498.
    [21]
    BOUHABILA E H AÏM R B, BUISSON H., Fouling characterisation in membrane bioreactors[J]. Separation & Purification Technology, 2001,22(1/2/3):123-132.
    [22]
    LI X F, LI Y J, LIU H, et al. Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor[J]. Separation and Purification Technology, 2008,59(1):26-33.
    [23]
    王成端, 黄国富. 好氧颗粒污泥膜生物反应器中的污泥性质与膜污染研究[J]. 环境科学, 2010,31(3):206-212.

    WANG C D, HUANG G F. Sludge performances and membrane pollution in aerobic granular sludge membrane bioreactor[J]. Environmental Science, 2010,31(3):206-212.
    [24]
    ZHAO X, WANG X C, CHEN Z L, et al. Microbial community structure and pharmaceuticals and personal care products removal in a membrane bioreactor seeded with aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2015,99(1):425-433.
    pmid: 25099174
    [25]
    BATHE S, MOHAN T V K, WUERTZ S, et al. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer[J]. Water Science & Technology, 2004,49(11/12):337-344.
    [26]
    WUERTZ S, OKABE S, HAUSNER M. Microbial communities and their interactions in biofilm systems: an overview[J]. Water Science & Technology, 2004,49(11/12):327.
    [27]
    JANG A, YOON Y H, KIM I S, et al. Characterization and evaluation of aerobic granules in sequencing batch reactor[J]. Journal of Biotechnology, 2003,105(1/2):71-82.
    [28]
    LIU Y, WANG Z W, QIN L, et al. Selection pressure-driven aerobic granulation in a sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2005,67(1):26-32.
    doi: 10.1007/s00253-004-1820-2
    [29]
    LIN Y M, LIU Y, TAY J H. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors[J]. Applied Microbiology & Biotechnology, 2003,62(4):430-435.
    doi: 10.1007/s00253-003-1359-7 pmid: 12783225
    [30]
    ZHAO X, CHEN Z L, WANG X C, et al. PPCPs removal by aerobic granular sludge membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2014,98(23):9843-9848.
    doi: 10.1007/s00253-014-5923-0 pmid: 25038925
    [31]
    周秀琴. 膜分离法的开发应用[J]. 发酵科技通讯, 2003,32(3):39-40.
    [32]
    刘忠洲, 续曙光, 李锁定. 微滤,超滤过程中的膜污染与清洗[J]. 水处理技术, 1997,23(4):187-193.

    LIU Z Z, XU S G, LI S D. Membrane fouling and cleaning in UF and MF[J]. Technology of Water Treatment, 1997,23(4):187-193.
    [33]
    张恒亮, 段亮, 姚美辰, 等. MBBR-MBR组合工艺处理生活污水效能及膜污染研究[J]. 环境工程技术学报, 2019,9(3):245-251.

    ZHANG H L, DUAN L, YAO M C, et al. Study on performance and membrane fouling of MBBR-MBR combined process for treatment of domestic wastewater[J]. Journal of Environmental Engineering Technology, 2019,9(3):245-251.
    [34]
    TARDIEU E, GRASMICK A, GEAUGEY V, et al. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment[J]. Journal of Membrane Science, 1999,156(1):131-140.
    [35]
    SHIN H S, KANG S T. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times[J]. Water Research, 2003,37(1):121-127.
    doi: 10.1016/s0043-1354(02)00249-x pmid: 12465793
    [36]
    LESJEAN B, ROSENBERGER S, LAABS C, et al. Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment[J]. Water Science and Technology, 2005,51(6/7):1-8.
    [37]
    GUO W, NGO H H, LI J. A mini-review on membrane fouling[J]. Bioresource Technology, 2012,122:27-34.
    doi: 10.1016/j.biortech.2012.04.089 pmid: 22608938
    [38]
    LEE J, AHN W Y, LEE C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research, 2001,35(10):2435-2445.
    doi: 10.1016/s0043-1354(00)00524-8 pmid: 11394778
    [39]
    WISNIEWSKI C, GRASMICK A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 1998,138(2/3):403-411.
    [40]
    BOUHABILA E H, AÏM R B, BUISSON H. Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment)[J]. Desalination, 1998,118(1/2/3):315-322.
    [41]
    JUANG Y C, ADAV S S, LEE D J, et al. Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactors[J]. Environmental Science & Technology, 2010,44(4):1267-1273.
    doi: 10.1021/es9024657 pmid: 20102183
    [42]
    NAGAOKA H. Nitrogen removal by submerged membrane separation activated sludge process[J]. Water Science and Technology, 1999,39(8):107-114.
    [43]
    WU Z, WANG Z, ZHOU Z, et al. Sludge rheological and physiological characteristics in a pilot-scale submerged membrane bioreactor[J]. Desalination, 2007,212(1/2/3):152-164.
    [44]
    TAY J H, LIU Q S, LIU Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors[J]. Environmental Technology, 2002,23(8):931-936.
    [45]
    ZHENG Y M, YU H Q, SHENG G P. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor[J]. Process Biochemistry, 2005,40(2):645-650.
    [46]
    TAY T L, MOY Y P, JIANG H L, et al. Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed[J]. Journal of Biotechnology, 2005,115(4):387-395.
    doi: 10.1016/j.jbiotec.2004.09.008 pmid: 15639100
    [47]
    TSUNEDA S, NAGANO T, HOSHINO T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J]. Water Research, 2003,37(20):4965-4973.
    doi: 10.1016/j.watres.2003.08.017 pmid: 14604643
    [48]
    YANG S F, LIU Q S, TAY J H, et al. Growth kinetics of aerobic granules developed in sequencing batch reactors[J]. Letters in Applied Microbiology, 2004,38(2):106-112.
    doi: 10.1111/j.1472-765x.2003.01452.x pmid: 14746540
    [49]
    KREUK M K D, van LOOSDRECHT M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science & Technology:A Journal of the International Association on Water Pollution Research, 2004,49(11/12):9.
    [50]
    KREUK M K D, PRONK M, LOOSDRECHT M C M V. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures[J]. Water Research, 2005,39(18):4476-4484.
    doi: 10.1016/j.watres.2005.08.031 pmid: 16226290
    [51]
    BEUN J J, LOOSDRECHT M C M V, HEIJNEN J J. Aerobic granulation in a sequencing batch airlift reactor[J]. Water Research, 2002,36(3):702-712.
    doi: 10.1016/s0043-1354(01)00250-0 pmid: 11831218
    [52]
    MOSQUERA-CORRAL A, KREUK M K D, HEIJNEN J J, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor[J]. Water Research, 2005,39(12):2676-2686.
    doi: 10.1016/j.watres.2005.04.065 pmid: 15978652
    [53]
    MOSQUERA-CORRAL A, MONTRÀS A, HEIJNEN J J, et al. Degradation of polymers in a biofilm airlift suspension reactor[J]. Water Research, 2003,37(3):485-492.
    doi: 10.1016/s0043-1354(02)00309-3 pmid: 12688682
    [54]
    KREUK M K D, KISHIDA N, TSUNEDA S, et al. Behavior of polymeric substrates in an aerobic granular sludge system[J]. Water Research, 2010,44(20):5929-5938.
    doi: 10.1016/j.watres.2010.07.033 pmid: 20817210
    [55]
    MARTINS A M P, HEIJNEN J J, LOOSDRECHT M C M V. Effect of feeding pattern on storage and sludge settleability under aerobic conditions[J]. Water Research, 2003,37(11):2555-2570.
    doi: 10.1016/S0043-1354(03)00070-8 pmid: 12753833
    [56]
    PRONK M, ABBAS B, AL-ZUHAIRY S H K, et al. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2015,99(12):5257-5268.
    doi: 10.1007/s00253-014-6358-3 pmid: 25616527
    [57]
    HORSWILL A R, STOODLEY P, STEWART P S, et al. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities[J]. Analytical and Bioanalytical Chemistry, 2007,387(2):371-380.
    doi: 10.1007/s00216-006-0720-y pmid: 17047948
    [58]
    CAMILLI A. Bacterial small-molecule signaling pathways[J]. Science, 2006,311(5764):1113-1116.
    doi: 10.1126/science.1121357 pmid: 16497924
    [59]
    REVSBECH N P, JORGENSEN B B, BLACKBURN T H, et al. Microelectrode studies of the photosynjournal and O2,H2S,and pH profiles of a microbial matl[J]. Limnology & Oceanography, 1983,28(6):1062-1074.
    [60]
    JORGENSEN B B, REVSBECH N P, COHEN Y. Photosynjournal and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities[J]. Limnology and Oceanography, 1983,28(6):1075-1093.
    [61]
    DECHO A W, NORMAN R S, VISSCHER P T. Quorum sensing in natural environments: emerging views from microbial mats[J]. Trends in Microbiology, 2010,18(2):73-80.
    doi: 10.1016/j.tim.2009.12.008 pmid: 20060299
    [62]
    BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats:changing paradigms,new discoveries[J]. Sedimentary Geology, 2006,185(3/4):131-145.
    [63]
    LEY R E, HARRIS J K, WILCOX J, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat[J]. Appliedand Environmental Microbiology, 2006,72(5):3685-3695.
    [64]
    LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010,28(6):919-934.
    doi: 10.1016/j.biotechadv.2010.08.007 pmid: 20728530
    [65]
    MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Appliedand Environmental Microbiology, 2005,71(2):1051-1057.
    [66]
    DENG S, WANG L, SU H. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge[J]. Journal of Environmental Management, 2016,173:49-54.
    doi: 10.1016/j.jenvman.2016.03.008 pmid: 26974237
    [67]
    ADAV S S, LEE D J, TAY J H. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Research, 2008,42(6/7):1644-1650.
    [68]
    REN T T, LIU L, SHENG G P, et al. Calcium spatial distribution in aerobic granules and its effects on granule structure,strength and bioactivity[J]. Water Research, 2008,42(13):3343-3352.
    doi: 10.1016/j.watres.2008.04.015 pmid: 18514253
    [69]
    SAJJAD M, KIM K S. Influence of Mg2+ catalyzed granular sludge on flux sustainability in a sequencing batch membrane bioreactor system[J]. Chemical Engineering Journal, 2015,281:404-410.
    [70]
    JIANG H L, TAY J H, LIU Y, et al. Ca2+augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors[J]. Biotechnology Letters, 2003,25(2):95-99.
    doi: 10.1023/a:1021967914544 pmid: 12882281
    [71]
    ZHOU D, LIU M, GAO L, et al. Calcium accumulation characterization in the aerobic granules cultivated in a continuous-flow airlift bioreactor[J]. Biotechnology Letters, 2013,35(6):871-877.
    doi: 10.1007/s10529-013-1157-y pmid: 23436127
    [72]
    LIN Y M, WANG L, CHI Z M, et al. Bacterial alginate role in aerobic granular bio:particles formation and settleability improvement[J]. Separation Science and Technology, 2008,43(7):1642-1652.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(454) PDF Downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return