寒区河流营养物基准制定的方法体系研究及其应用以黑龙江干流为例

Research on the method system for formulating nutrient standards in cold region rivers and its application: taking the mainstream of the Heilongjiang River as an example

  • 摘要: 寒区河流具有独特生态特征与环境条件,科学界定其营养物的承载阈值,对于保障河流生态健康、支撑水环境科学管理具有重要现实价值。以我国寒区河流黑龙江干流为对象,基于其2016—2024年水质监测数据与生物群落调查结果,筛选pH、EC、DO、CODMn、CODCr、BOD5、NH3-N、TN、TP共9项指标,集成国际营养物基准制定方法,构建寒区河流基准体系。结果表明:1)黑龙江作为寒区河流,核心特点为冰封期长(11月—次年3月)、低温抑制微生物活性以及冻土影响矿物质循环,优先采用着生藻类与浮游生物作为响应指标。2)采用群体分布法、三分法、参照点分布法确定自然本底,结合压力源-响应分析法验证生态阈值耦合应用,推导出黑龙江非冰封期基准值分别为TP 0.047 mg/L、TN 0.82 mg/L、NH3-N 0.28 mg/L、CODMn 6.0 mg/L、CODCr 15 mg/L、BOD5 1.89 mg/L、pH 7.35、EC 15.9 mS/m、DO 8.4 mg/L。3)针对寒区河流冰封期冰盖阻隔复氧、低温抑制降解、营养盐浓缩等特殊问题,引入降解抑制系数、离子浓缩效应及生物响应偏移校准进行冰封期修正,各指标基准值修正为TP 0.061 mg/L(修正系数1.3)、TN 0.98 mg/L(修正系数1.2)、NH3-N 0.29 mg/L(通量校准)、CODMn 7.8 mg/L(降解抑制+拐点偏移)、CODCr 18.75 mg/L(降解抑制+修正系数1.25)、BOD5 1.51 mg/L(活性抑制+修正系数0.8)、pH 7.35(保持稳定)、EC 19.5 mS/m(本底通量校准)、DO 6.8 mg/L(修正系数0.8)。研究构建了适合寒区河流的“统计分析+压力响应+冰封期修正”的基准制定方法体系,可为黑龙江水环境管理及河流营养物基准制定提供理论参考。

     

    Abstract: Cold-region rivers possess unique ecological characteristics and environmental conditions. Scientifically defining their nutrient-carrying capacity thresholds holds significant practical value for safeguarding river ecological health and supporting scientific water environment management. This study focused on the mainstream of the cold-region river, the Heilongjiang River. It screened nine indicators, including pH, EC, DO, CODMn, CODCr, BOD5, NH3-N, TN and TP, based on the water quality monitoring data from 2016 to 2024 and the investigation results of biological communities. The international nutrient benchmark formulation methods were integrated to construct the benchmark system of cold-region rivers. The results indicated: 1) The Heilongjiang River is characterized by a long freezing period (November to the next March), low temperatures suppressing microbial activity, and permafrost affecting mineral cycling. Epiphytic algae and plankton should be given priority as response indicators. 2) Natural background levels were determined using the group distribution method, ternary method, and reference point distribution method. These were integrated with pressure-response analysis to validate ecological threshold coupling, yielding the following reference values for the non-frozen period: TP 0.047 mg/L, TN 0.82 mg/L, NH3-N 0.28 mg/L, CODMn 6.0 mg/L, CODCr 15 mg/L, BOD5 1.89 mg/L, pH 7.35, EC 15.9 mS/m, and DO 8.4 mg/L. 3) To address specific challenges during the freezing period, including ice cover obstruction of reoxygenation, low-temperature degradation inhibition, and nutrient salt concentration, corrections were applied using degradation inhibition coefficients, ion concentration effects, and biological response offset calibration. The adjusted indicators were as follows: TP 0.061 mg/L (correction factor 1.3), TN 0.98 mg/L (correction factor 1.2), NH3-N 0.29 mg/L (flux calibration), CODMn 7.8 mg/L (degradation inhibition+inflection point offset), CODCr 18.75 mg/L (degradation inhibition+correction factor 1.25), BOD5 1.51 mg/L (activity inhibition+correction factor 0.8), pH 7.35 (maintained stable), EC 19.5 mS/m (background flux calibration), DO 6.8 mg/L (correction factor 0.8). This study establishes a benchmarking method system of "statistical analysis + pressure response + freezing period correction" suitable for rivers in the cold region, which can provide theoretical references for water environment management and the formulation of river nutrient benchmarks in the Heilongjiang River.

     

/

返回文章
返回