Volume 14 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
REN D J.Optimization of supporting design for medical waste incineration process and testing analysis of incineration system performance[J].Journal of Environmental Engineering Technology,2024,14(2):545-550 doi: 10.12153/j.issn.1674-991X.20230598
Citation: REN D J.Optimization of supporting design for medical waste incineration process and testing analysis of incineration system performance[J].Journal of Environmental Engineering Technology,2024,14(2):545-550 doi: 10.12153/j.issn.1674-991X.20230598

Optimization of supporting design for medical waste incineration process and testing analysis of incineration system performance

doi: 10.12153/j.issn.1674-991X.20230598
  • Received Date: 2023-08-16
  • Accepted Date: 2024-01-29
  • Rev Recd Date: 2024-01-15
  • In order to realize efficient, safe incineration of medical waste, meeting with the environmental standards, the design calculation for the main incineration process supporting equipment (including primary combustion chamber and secondary combustion chamber) was carried out and the design parameters were reviewed. Sawdust and wood blocks were used as substrates for test waste. The parameters of the incineration process, including hydrogen chloride removal rate, heavy metal mercury removal rate, combustion efficiency, residual heat removal rate, soot removal rate, dioxin emission concentration, and overall system performance score, were studied. The volumes of the primary combustion chamber and secondary combustion chamber were determined using methods of thermal engineering theory. Performance metrics were monitored during the incineration process, and correlation analysis was conducted using SPSS 22. The results showed that the volumes of the primary combustion chamber and secondary combustion chamber were inversely calculated as 1.20 and 3.30 m³, respectively, both of which were smaller than the actual furnace volume and met the requirements. The performance score exhibited a strong positive correlation with the removal rates of hydrogen chloride, heavy metal mercury, soot, and combustion efficiency (R=0.965, 0.966, 0.982, 0.997, respectively). Conversely, the performance score was significantly negatively correlated with thermal degradation rate (R=−0.986) and dioxin emission concentration (R=−0.957).

     

  • loading
  • [1]
    陈刚, 于晓东, 岳佳妮, 等. 医疗废物处理处置污染控制标准解读[J]. 环境保护科学,2021,47(3):1-6.

    CHEN G, YU X D, YUE J N, et al. Interpretation of standard for pollution control on medical waste treatment and disposal[J]. Environmental Protection Science,2021,47(3):1-6.
    [2]
    赵丽娜, 姚芝茂, 戴天有, 等. 《医疗废物集中处置技术规范》修订关键点研究[J]. 环境工程技术学报,2015,5(4):315-322.

    ZHAO L N, YAO Z M, DAI T Y, et al. Study on key points in revising of technical codes for the centralized disposal of medical wastes[J]. Journal of Environmental Engineering Technology,2015,5(4):315-322.
    [3]
    车瑞杰, 李继宁, 张胜田, 等. 国内外医疗废物处理主要技术应用及发展[J]. 当代化工研究,2022(6):54-56.

    CHE R J, LI J N, ZHANG S T, et al. Medical waste disposal technology and management at home and abroad[J]. Modern Chemical Research,2022(6):54-56.
    [4]
    朱焕铮, 张涛, 陆洁平, 等. 医疗废物辐照消毒处理工程设计与经济分析[J]. 环境卫生工程,2022,30(6):40-45.
    [5]
    TRINH V T, VAN H T, PHAM Q H, et al. Treatment of medical solid waste using an air flow controlled incinerator[J]. Polish Journal of Chemical Technology,2020,22(1):29-34. doi: 10.2478/pjct-2020-0005
    [6]
    MANEGDEG F, CORONADO L O, PAÑA R. Medical waste treatment and electricity generation using pyrolyzer-Rankine cycle for specialty hospitals in Quezon City, Philippines[J]. IOP Conference Series:Earth and Environmental Science,2020,463(1):012180. doi: 10.1088/1755-1315/463/1/012180
    [7]
    于伟安, 冯钦忠, 雍毅, 等. 移动式医疗废物原位消毒处理工艺和效果比较[J]. 环境工程学报,2023,17(7):2314-2323.

    YU W A, FENG Q Z, YONG Y, et al. Comparative study on the process and effect of mobile in situ disinfection treatment facilities for medical waste[J]. Chinese Journal of Environmental Engineering,2023,17(7):2314-2323.
    [8]
    郭梦茹, 张冰如, 席佳锐, 等. 垃圾分类前后焚烧飞灰的理化性质及重金属污染特性[J]. 环境工程技术学报,2022,12(3):843-850.

    GUO M R, ZHANG B R, XI J R, et al. Physicochemical properties and heavy metal pollution characteristics of incineration fly ash before and after refuse classification[J]. Journal of Environmental Engineering Technology,2022,12(3):843-850.
    [9]
    OLABIN V M, TRUKHAN S P, MAKSYMUK O B, et al. Solid household waste disposal by double stage burning on walking beam and in the bubbled melt[J]. Energy Technologies & Resource Saving,2021(1):47-52.
    [10]
    冯银均, 张丽霞, 冯桂, 等. 医疗废物焚烧处置与化学处置方式的安全性比较分析[J]. 科技与创新,2019(13):23-24.
    [11]
    王荔, 钟日钢, 陈德珍, 等. 生活垃圾焚烧炉应急处置医疗废物对炉渣和烟气排放影响研究[J]. 环境卫生工程,2021,29(6):1-7.
    [12]
    于晓东, 曹云霄, 李辉, 等. 基于动态旋转作用的医疗废物高温蒸汽消毒处理技术研究[J]. 环境保护科学,2021,47(3):30-33.

    YU X D, CAO Y X, LI H, et al. Study on steam disinfection technology based on dynamic rotation for medical waste[J]. Environmental Protection Science,2021,47(3):30-33.
    [13]
    张凯茹, 邓东阳, 贾文超, 等. 医疗废物焚烧飞灰脱毒减害技术研究进展[J]. 环境工程,2020,38(9):175-184.

    ZHANG K R, DENG D Y, JIA W C, et al. Research progress in detoxification technology of medical waste incinerator fly ash[J]. Environmental Engineering,2020,38(9):175-184.
    [14]
    胡伟儒, 李泷, 陈庆传. 立式旋转热解气化炉医疗废物焚烧工艺配套设计实践[J]. 节能与环保,2022(10):94-96.
    [15]
    宋钊, 谢争, 王文华. 医疗废物焚烧处置系统优化及烟气实测分析[J]. 工业安全与环保,2011,37(5):13-14.
    [16]
    钟超. 医疗废物高温蒸汽灭菌处理技术应用实例研究[J]. 环境保护与循环经济,2022,42(10):44-46.
    [17]
    运嘉宁. 回转窑焚烧危险废物工艺设计、运行优化及管理策略[D]. 天津: 河北工业大学, 2018.
    [18]
    马攀. 危险废物焚烧系统的数值模拟与试验研究[D]. 杭州: 浙江大学, 2012.
    [19]
    ZIIEN F. A model of a pyrolysis gasifier for prediction compositions and flou rate of produced gas[J]. Fuel Science and Technology International,1994,12(5):705-714. doi: 10.1080/08843759408916203
    [20]
    CHUNG-YIN TSAI J, IM H G, KIM T Y, et al. Computational modeling of pyrolysis and combustion in a fixed-bed waste gasifier[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2012,22(8):949-970.
    [21]
    吴彤, 李建军, 刘伟民, 等. 快速冷凝条件下燃煤电厂烟囱排口可凝结颗粒物转化规律模拟研究[J/OL]. 环境科学研究. [2023-12-25]. https://www.hjkxyj.org.cn/article/id/caf01736-d09d-416a-848c-6c1a3b80f20c.

    WU T, LI J J, LIU W M, et al. Simulation study on the transformation rule of condensable particulate matter in chimney vent of coal-fired power plant under the condition of rapid condensing conditions[J/OL]. Research of Environmental Sciences. [2023-12-25]. https://www.hjkxyj.org.cn/article/id/caf01736-d09d-416a-848c-6c1a3b80f20c.
    [22]
    夏小龙, 江理明. 改良SNCR用于医疗废物焚烧烟气高效脱硝的技术研究[J]. 节能与环保,2022(9):55-57.
    [23]
    陈波, 曹歌瀚, 黄亚继, 等. 基于机器学习的燃煤锅炉燃烧效率在线计算[J]. 洁净煤技术,2021,27(4):174-179.

    CHEN B, CAO G H, HUANG Y J, et al. Online calculation of coal-fired boiler combustion efficiency based on machine learning[J]. Clean Coal Technology,2021,27(4):174-179.
    [24]
    徐梦蝶, 王建芳, 葛璟麟, 等. 生物法烟气脱硝工艺研究进展[J]. 环境工程技术学报,2022,12(6):2049-2056.

    XU M D, WANG J F, GE J L, et al. Research advances of bioprocesses for NO x removal from flue gas: a critical review[J]. Journal of Environmental Engineering Technology,2022,12(6):2049-2056. □
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(11)

    Article Metrics

    Article Views(36) PDF Downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return