Volume 14 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
DU Y L,WANG Y,HE S L,et al.Collaborative control of pollution and carbon reduction in the process of onshore oil and gas exploitation[J].Journal of Environmental Engineering Technology,2024,14(2):371-378 doi: 10.12153/j.issn.1674-991X.20230478
Citation: DU Y L,WANG Y,HE S L,et al.Collaborative control of pollution and carbon reduction in the process of onshore oil and gas exploitation[J].Journal of Environmental Engineering Technology,2024,14(2):371-378 doi: 10.12153/j.issn.1674-991X.20230478

Collaborative control of pollution and carbon reduction in the process of onshore oil and gas exploitation

doi: 10.12153/j.issn.1674-991X.20230478
  • Received Date: 2023-06-27
  • Accepted Date: 2023-10-09
  • Rev Recd Date: 2023-09-23
  • The oil and gas industry is an important source of volatile organic compounds (VOCs) emissions and the largest industrial release source of methane (CH4). The coordinated control of VOCs and CH4 in oil and gas exploitation to achieve pollution reduction and carbon reduction is of great significance to China's atmospheric environmental governance and the realization of the "double carbon" goal. Most of the VOCs and CH4 emission sources in the process of oil and gas exploitation have the same root homology, and the organized emission of processes and the torch emission are the largest VOCs emission source and CH4 emission source, respectively. On the basis of adding the collaborative control path of new networked monitoring, selecting appropriate control measures can improve the efficiency of collaborative control of pollutants. The multi-pollutant cost-benefit method in the cost-benefit accounting of pollution control has higher economic benefits. The absorption method and adsorption method are VOCs treatment technologies with higher technical maturity and economy, and reducing the number of compressor and engine start-ups is the most economical CH4 emission reduction measure.

     

  • loading
  • [1]
    张楠, 吕连宏, 王斯一, 等. 基于文献计量分析的碳中和研究进展[J]. 环境工程技术学报,2023,13(2):464-472. doi: 10.12153/j.issn.1674-991X.20220275

    ZHANG N, LÜ L H, WANG S Y, et al. Analysis of research progress in carbon neutrality based on bibliometrics[J]. Journal of Environmental Engineering Technology,2023,13(2):464-472. doi: 10.12153/j.issn.1674-991X.20220275
    [2]
    姜晓群, 王力, 周泽宇, 等. 关于温室气体控制与大气污染物减排协同效应研究的建议[J]. 环境保护,2019,47(19):31-35.

    JIANG X Q, WANG L, ZHOU Z Y, et al. Suggestions on Co-benefits between GHG emission control and air pollutant reduction[J]. Environmental Protection,2019,47(19):31-35.
    [3]
    谭琦璐, 温宗国, 杨宏伟. 控制温室气体和大气污染物的协同效应研究评述及建议[J]. 环境保护,2018,46(24):51-57.

    TAN Q L, WEN Z G, YANG H W. Review and recommendations on the Co-benefit effects of controlling greenhouse gases and atmospheric pollutants[J]. Environmental Protection,2018,46(24):51-57.
    [4]
    宋丽容. “双碳”目标下消耗臭氧层物质与温室气体协同管控的法治路径[J]. 江苏大学学报(社会科学版),2022,24(4):80-91.

    SONG L R. On the legal path for coordinated control of ozone depleting substances and greenhouse gases under the goals of "carbon peaking and carbon neutrality"[J]. Journal of Jiangsu University (Social Sciences Edition),2022,24(4):80-91.
    [5]
    刘海艳, 于会彬, 王志刚. 粤港澳大湾区温室气体和大气污染物协同控制现状分析[J]. 环境工程技术学报,2023,13(2):455-463.

    LIU H Y, YU H B, WANG Z G. Analysis of the present situation of greenhouse gases and air pollutants co-control in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Journal of Environmental Engineering Technology,2023,13(2):455-463.
    [6]
    赵玉杰, 王伟. 垃圾填埋场甲烷气的排放及减排措施[J]. 环境卫生工程,2004,12(4):217-219.

    ZHAO Y J, WANG W. Emission of methane from landfill site and its mitigation measures[J]. Environmental Sanitation Engineering,2004,12(4):217-219.
    [7]
    刘峰. 石油天然气开采行业挥发性有机物排放控制技术概述[J]. 石油化工安全环保技术,2018,34(1):57-60. doi: 10.3969/j.issn.1673-8659.2018.01.015

    LIU F. Overview of emission control technology of volatile organic compounds in oil and gas exploitation industry[J]. Petrochemical Safety and Environmental Protection Technology,2018,34(1):57-60. doi: 10.3969/j.issn.1673-8659.2018.01.015
    [8]
    梁林佐, 马滢, 毋勇, 等. 陆上石油天然气开采中VOCs与CH4的协同控制[J]. 油气田环境保护,2022,32(2):1-6.

    LIANG L Z, MA Y, WU Y, et al. Co-control of VOCs and CH4 on air pollutants for onshore oil and gas exploitation and production industry[J]. Environmental Protection of Oil & Gas Fields,2022,32(2):1-6.
    [9]
    杨罕玲, 赵一炜. 美国油气行业国家温室气体清单和报送体系[J]. 油气田环境保护,2022,32(1):1-8. doi: 10.3969/j.issn.1005-3158.2022.01.001

    YANG H L, ZHAO Y W. National greenhouse gas inventory and reporting system for U. S. oil and gas industry[J]. Environmental Protection of Oil & Gas Fields,2022,32(1):1-8. doi: 10.3969/j.issn.1005-3158.2022.01.001
    [10]
    宋磊, 翁艺斌. 中国油气行业甲烷排放管控政策研究[J]. 世界石油工业,2021,28(2):25-30.
    [11]
    李向阳, 高飞, 廖健, 等. 油气田VOCs排放管控途径探索与实践[J]. 油气田环境保护,2022,32(6):68-71. doi: 10.3969/j.issn.1005-3158.2022.06.012

    LI X Y, GAO F, LIAO J, et al. Exploration and practice of VOCs emission control approaches for oil and gas field development enterprises under the low carbon background[J]. Environmental Protection of Oil & Gas Fields,2022,32(6):68-71. doi: 10.3969/j.issn.1005-3158.2022.06.012
    [12]
    崔伟, 谷梅霞, 赵风杰, 等. 油田站场VOCs排放量核算及减排措施建议[J]. 安全、健康和环境,2022,22(9):17-22. doi: 10.3969/j.issn.1672-7932.2022.09.004

    CUI W, GU M X, ZHAO F J, et al. Calculation of volatile organic compound emissions and suggestions on emission reduction measures for oil fields[J]. Safety Health & Environment,2022,22(9):17-22. doi: 10.3969/j.issn.1672-7932.2022.09.004
    [13]
    王鹏. 石化企业挥发性有机物排放源及排放量估算探讨[J]. 石油化工安全环保技术,2013,29(1):59-62.

    WANG P. Discussion on emission sources and emission estimation of volatile organic compounds in petrochemical enterprises[J]. Petrochemical Safety and Environmental Protection Technology,2013,29(1):59-62.
    [14]
    江梅, 张国宁, 魏玉霞, 等. 工业挥发性有机物排放控制的有效途径研究[J]. 环境科学,2011,32(12):3487-3490.

    JIANG M, ZHANG G N, WEI Y X, et al. Emission control way of volatile organic compounds in industry[J]. Chinese Journal of Environmental Science,2011,32(12):3487-3490.
    [15]
    王教凯. 油气处理厂VOCs排放特征及综合管控对策研究[J]. 石油石化绿色低碳,2020,5(6):40-44. doi: 10.3969/j.issn.2095-0942.2020.06.010

    WANG J K. Analysis on VOCs emission and control in oil & gas processing plant[J]. Energy Conservation and Emission Reduction in Petroleum and Petrochemical Industry,2020,5(6):40-44. doi: 10.3969/j.issn.2095-0942.2020.06.010
    [16]
    国务院. 大气污染防治行动计[A/OL]. [2022-02-07]. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm
    [17]
    生态环境部. 2020年挥发性有机物治理攻坚方案[A/OL]. [2022-02-07]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202006/t20200624_785827.html
    [18]
    栾志强, 王喜芹, 郝郑平, 等. 有机废气治理行业2017年发展综述[J]. 中国环保产业,2018(6):13-24. doi: 10.3969/j.issn.1006-5377.2018.06.005

    LUAN Z Q, WANG X Q, HAO Z P, et al. Development report on organic waste-gas treatment industry in 2017[J]. China Environmental Protection Industry,2018(6):13-24. doi: 10.3969/j.issn.1006-5377.2018.06.005
    [19]
    第十三届全国人民代表大会常务委员会. 中华人民共和国大气污染防治法[A/OL]. (2018-11-13)[2022-02-07]. https://www.mee.gov.cn/ywgz/fgbz/fl/201811/t20181113_673567.shtml.
    [20]
    生态环境部, 国家市场监督管理总局. 陆上石油天然气开采工业大气污染物排放标准: GB 39728—2020[S/OL]. [2023-06-07]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/202012/W020201225551948738018.pdf.
    [21]
    US EPA. Standards of performance for equipment leaks of VOC from onshore natural gas processing plants for which construction[S/OL]. (2012-08-16)[2022-02-07]. https://www.ecfr.gov/cgibin/text-idx?node=sp40.7.60.kkk.
    [22]
    US EPA. Priority list and additions to the list of categories of stationary sources[A/OL]. (1979-08-21)[2022-02-07]. https://www.loc.goc/item/fr044163/.
    [23]
    US EPA. Actions to reduce methane and VOC emissions from the oil and natural gas industry: final rules and draft information collection request[A/OL]. (2016-05-01)[2022-02-07]. https://www.epa.gov/sites/production/files/2016-09/documents/epa-oilandgasactionsmay2016_presentation.pdf.
    [24]
    US EPA. Table of covered sources, 2012, 2016 and proposed for 2021[A/OL]. [2022-02-07]. https://www.epa.gov/system/files/documents/2021-11/table-of-covered-sources-2012-2021.pdf.
    [25]
    US EPA. Standards of performance for new, reconstructed, and modified sources and emissions guidelines for existing sources: oil and natural gas sector climate review[S/OL]. (2021-11-15)[2022-02-07]. https://www.federalregister.gov/documents/2021/11/15/2021-24202/standards-of-performance-new-reconstructed-and-modified-sources-and-emissions-guidelines-for.
    [26]
    郑逸璇, 宋晓晖, 周佳, 等. 减污降碳协同增效的关键路径与政策研究[J]. 中国环境管理,2021,13(5):45-51.

    ZHENG Y X, SONG X H, ZHOU J, et al. Synergetic control of environmental pollution and carbon emissions: pathway and policy[J]. Environmental Conformity Assessment,2021,13(5):45-51.
    [27]
    姜华, 高健, 阳平坚. 推动减污降碳协同增效建设人与自然和谐共生的美丽中国[J]. 环境保护,2021,49(16):17-19.

    JIANG H, GAO J, YANG P J. Promote co-control of air pollutants and GHGs to build a beautiful China with harmonious coexistence between human and nature[J]. Environmental Protection,2021,49(16):17-19.
    [28]
    于雷, 牛韧, 薛强, 等. “三线一单”减污降碳协同管控的基本思路与建议[J]. 环境影响评价,2022,44(2):28-33.

    YU L, NIU R, XUE Q, et al. Fundamental considerations and suggestions of synergetic control of the "three lines one permit" and pollution and carbon reduction[J]. Environmental Impact Assessment,2022,44(2):28-33.
    [29]
    刘兆香, 王树堂, 王京, 等. 美国大气环境多污染物协同控制的经验与启示[J]. 环境保护科学,2020,46(1):53-59.

    LIU Z X, WANG S T, WANG J, et al. Experience and inspiration of the cooperative control of multiple pollutants in the atmospheric environment in United States[J]. Environmental Protection Science,2020,46(1):53-59.
    [30]
    孙彩萍, 孙启宏, 王维, 等. 固定源大气污染物监管技术框架及应用研究[J]. 环境工程技术学报,2019,9(6):741-747. doi: 10.12153/j.issn.1674-991X.2019.06.172

    SUN C P, SUN Q H, WANG W, et al. Technical framework and application of site-inspection and enforcement for air pollutants from stationary sources[J]. Journal of Environmental Engineering Technology,2019,9(6):741-747. doi: 10.12153/j.issn.1674-991X.2019.06.172
    [31]
    张博, 李蕙竹, 仲冰, 等. 中国甲烷控排面临的形势、问题与对策[J]. 中国矿业,2022,31(2):1-10. doi: 10.12075/j.issn.1004-4051.2022.02.026

    ZHANG B, LI H Z, ZHONG B, et al. The situation, problems and countermeasures for the controls of China's methane emissions[J]. China Mining Magazine,2022,31(2):1-10. doi: 10.12075/j.issn.1004-4051.2022.02.026
    [32]
    薛明, 卢明霞, 张晓飞, 等. 碳达峰、碳中和目标下油气行业绿色低碳发展建议[J]. 环境保护,2021,49(17):30-32.

    XUE M, LU M X, ZHANG X F, et al. Suggestions for green and low-carbon development of oil and gas industry under the targets of carbon peak and carbon neutrality[J]. Environmental Protection,2021,49(17):30-32.
    [33]
    汤玉平, 顾磊, 许科伟, 等. 油气微生物勘探机理及应用[J]. 微生物学通报,2016,43(11):2386-2395.

    TANG Y P, GU L, XU K W, et al. Research and application of microbial exploration for oil and gas[J]. Microbiology China,2016,43(11):2386-2395.
    [34]
    何少林, 陈辉, 于景琦, 等. 油气田挥发性有机物管控源项及排放系数研究[J]. 油气田环境保护,2020,30(1):24-27. doi: 10.3969/j.issn.1005-3158.2020.01.008

    HE S L, CHEN H, YU J Q, et al. Study on source term and emission coefficient of volatile organic compounds in oil and gas fields[J]. Environmental Protection of Oil & Gas Fields,2020,30(1):24-27. doi: 10.3969/j.issn.1005-3158.2020.01.008
    [35]
    刘广哲. 石化企业VOCs管理与控制措施研究[D]. 东营: 中国石油大学(华东), 2018.
    [36]
    崔翔宇, 刘光全, 薛明, 等. “碳中和”目标下我国油气行业甲烷管控的挑战与应对[J]. 油气与新能源,2021(2):43-45.

    CUI X Y, LIU G Q, XUE M, et al. "Carbon Neutrality" targeted regulation of methane in petroleum industry[J]. Petroleum Planning & Engineering,2021(2):43-45.
    [37]
    张岑, 李伟. 欧美甲烷减排战略与油气行业减排行动分析[J]. 国际石油经济,2021,29(12):16-23. doi: 10.3969/j.issn.1004-7298.2021.12.003

    ZHANG C, LI W. Analysis of methane emission reduction strategies in Europe and America and actions of oil and gas industry[J]. International Petroleum Economics,2021,29(12):16-23. doi: 10.3969/j.issn.1004-7298.2021.12.003
    [38]
    HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature,2014,514(7521):218-222. doi: 10.1038/nature13774
    [39]
    孟凡伟, 周学双, 童莉, 等. 油气田开发业挥发性有机物排放来源及控制措施[J]. 油气田环境保护,2015,25(3):32-34. doi: 10.3969/j.issn.1005-3158.2015.03.011

    MENG F W, ZHOU X S, TONG L, et al. Study on the emission and control measures of volatile organic compounds from oil and gas field industry[J]. Environmental Protection of Oil & Gas Fields,2015,25(3):32-34. doi: 10.3969/j.issn.1005-3158.2015.03.011
    [40]
    丁德武, 贾润中, 高少华, 等. LDAR技术在石化企业应用中常见问题解析[J]. 安全、健康和环境,2016,16(11):39-42. doi: 10.3969/j.issn.1672-7932.2016.11.011

    DING D W, JIA R Z, GAO S H, et al. Analysis of problems on LDAR technology application in petrochemical enterprises[J]. Safety Health & Environment,2016,16(11):39-42. doi: 10.3969/j.issn.1672-7932.2016.11.011
    [41]
    刘峰. LDAR技术在VOCs综合治理中的应用[J]. 安全、健康和环境,2017,17(12):1-4. doi: 10.3969/j.issn.1672-7932.2017.12.001

    LIU F. The application of LDAR technology in the comprehensive management of VOCs[J]. Safety Health & Environment,2017,17(12):1-4. doi: 10.3969/j.issn.1672-7932.2017.12.001
    [42]
    国内外甲烷排放控制行动与趋势: 2021中国甲烷论坛背景报告[EB/OL]. (2021-03-29)[2022-02-07]. www.cet.net.cn/uploads/soft/202103/1_29104647.pdf.
    [43]
    李建伟, 刘新宇, 修光利. VOCs无组织排放估算方法和控制标准初探[J]. 化学世界,2010,51(10):632-634. doi: 10.3969/j.issn.0367-6358.2010.10.017

    LI J W, LIU X Y, XIU G L. Estimation models and control standard for fugitive emission of volatile organic compounds[J]. Chemical World,2010,51(10):632-634. doi: 10.3969/j.issn.0367-6358.2010.10.017
    [44]
    US EPA. Actions to reduce methane and VOCs emissions from the oil and natural gas industry: final rules and draft ingformation collection request[EB/OL]. (2016-05-01)[2022-02-07]. https://www.epa.gov/sites/production/files/2016-09/documents/epa-oil and gas actions-may 2016 presentation.pdf.
    [45]
    刘思佳, 汪鹏, 王学海, 等. 石化行业小分子烃类吸附分离研究进展[J]. 广东化工,2022,49(19):102-104. doi: 10.3969/j.issn.1007-1865.2022.19.032
    [46]
    中国环保产业协会. 2022年VOCs减排控制行业发展评述和展望[EB/OL]. [2023-01-05]. https://huanbao.bjx.com.cn/topics/vocszljs/.
    [47]
    赫洁. 大气污染区域联防联控中VOCs的控制研究[D]. 天津: 河北工业大学, 2012.
    [48]
    孙先武, 汤峥玉. 化工企业VOCs治理现状及发展前景[J]. 安徽化工,2021,47(3):4-10. doi: 10.3969/j.issn.1008-553X.2021.03.002
    [49]
    王妍. 基于可变模糊优选模型的工业VOCs处理方案技术经济性评价[J]. 化工管理,2022(16):66-69. doi: 10.19900/j.cnki.ISSN1008-4800.2022.16.018

    WANG Y. Technical and economic evaluation of industrial VOCs treatment based on variable fuzzy optimization mode[J]. Chemical Enterprise Management,2022(16):66-69. doi: 10.19900/j.cnki.ISSN1008-4800.2022.16.018
    [50]
    刘剑文. 生物法净化处理工业废气的研究进展[J]. 建材与装饰,2016(15):129-130.
    [51]
    21省市VOCs排污费标准汇总[EB/OL]. (2017-11-28)[2023-01-05]. https://huanbao.bjx.com. cn/news/20171128/864291.shtml.
    [52]
    武宁. 河南省典型行业VOCs排放控制技术体系与成本-效益研究[D]. 郑州: 郑州大学, 2020.
    [53]
    李文娟, 董事壁, 滕富华, 等. 化工园区企业VOCs排放治理技术的评价分析[J]. 化工设计通讯,2017,43(9):197-199. doi: 10.3969/j.issn.1003-6490.2017.09.171
    [54]
    US EPA. 全球甲烷减排在行动, 美国篇之甲烷排放费简析[EB/OL]. (2022-01-07)[2023-01-07]. https://www. ideacarbon.org/news_free/56680/?pc=pc#:~:text=.
    [55]
    US EPA. Natural gas star program, contact us recommended technologies to reduce methane emissions[EB/OL]. (2022-05-18)[2023-01-07]. https://www.epa.gov/natural-gas-star-program/recommended-technologies-reduce-methane-emissions.
    [56]
    IEA. Methane Tracker 2021[R/OL]. [2023-01-07]. https://www.iea.org/re‐ports/methane-tracker-2021.
    [57]
    IEA. Curtailing methane emissions from fossil fuel operations[R/OL]. [2023-01-07]. https://iea.blob.core.windows. net/assets/585b901a-e7d2-4bca-b477-e1baa14dde5c/Curtailing Methane Emissions from Fossil Fuel Operations.pdf. □
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(8)

    Article Metrics

    Article Views(78) PDF Downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return