Volume 13 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
HAN W,ZHAO R F,SHI Y C,et al.Status and prospect of in-situ remediation technologies applied in hexavalent chromium contaminated sites[J].Journal of Environmental Engineering Technology,2023,13(4):1486-1496 doi: 10.12153/j.issn.1674-991X.20221240
Citation: HAN W,ZHAO R F,SHI Y C,et al.Status and prospect of in-situ remediation technologies applied in hexavalent chromium contaminated sites[J].Journal of Environmental Engineering Technology,2023,13(4):1486-1496 doi: 10.12153/j.issn.1674-991X.20221240

Status and prospect of in-situ remediation technologies applied in hexavalent chromium contaminated sites

doi: 10.12153/j.issn.1674-991X.20221240
  • Received Date: 2022-12-11
  • Accepted Date: 2023-04-03
  • Rev Recd Date: 2023-03-31
  • Available Online: 2023-09-20
  • Hexavalent chromium Cr(Ⅵ) is a typical heavy metal pollutant with a wide range of sources. Due to its diverse forms and valence states, the geo-chemical reaction process is extremely complicated. There are lots of Cr(Ⅵ) contaminated plots in China and the remediation of Cr(Ⅵ) contaminated sites is very challenging. In-situ remediation has gradually become the mainstream of remediation strategies for contaminated sites due to many advantages such as no excavation and less environmental interference. The latest research progress of different in-situ remediation technologies for Cr(Ⅵ) was reviewed. Based on a large number of in-situ remediation engineering cases at home and abroad, the application effects of in-situ biological, in-situ chemical and other remediation technologies and different injection methods were analyzed. The key parameters of different types of in-situ remediation technologies including applicable geological conditions, applicable concentration range, influence radius, remediation duration, remediation medium, agent type and dosage, and injection method were clarified. It played a key role to establish a precise contamination field concept model, and choose efficient chemicals and the best injection method or remediation process combinations for complex contaminated sites. The advantages and disadvantages of different in-situ remediation technologies of Cr(Ⅵ) were compared in examples, and their different applicable scenarios were explored. At the same time, the future development direction of technologies was prospected.

     

  • loading
  • [1]
    TANG X, HUANG Y, LI Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety,2021,208:111699. doi: 10.1016/j.ecoenv.2020.111699
    [2]
    US EPA. Superfund remedy report 16th edition: EPA-542-R-20-001[R]. Washington DC: Office of Land and Emergency Management, 2020.
    [3]
    生态环境部土壤生态环境司, 生态环境部土壤与农业农村生态环境监管技术中心, 生态环境部南京环境科学研究所. 地下水污染风险管控与修复技术手册[M]. 北京: 中国环境出版集团, 2021.
    [4]
    倪碧珩, 施维林, 陈洁, 等.某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报,2022,12(3):878-885. doi: 10.12153/j.issn.1674-991X.20210142

    NI B H, SHI W L, CHEN J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site[J]. Journal of Environmental Engineering Technology,2022,12(3):878-885. doi: 10.12153/j.issn.1674-991X.20210142
    [5]
    SUN H, BROCATO J, COSTA M. Oral chromium exposure and toxicity[J]. Current Environmental Health Reports,2015,2(3):295-303. doi: 10.1007/s40572-015-0054-z
    [6]
    TASSI E, GRIFONI M, BARDELLI F, et al. Evidence for the natural origins of anomalously high chromium levels in soils of the Cecina Valley (Italy)[J]. Environmental Science Processes & Impacts,2018,20(6):965-976.
    [7]
    PATERNOSTER M, RIZZO G, SINISI R, et al. Natural hexavalent chromium in the pollino massif groundwater (southern Apennines, Italy): occurrence, geochemistry and preliminary remediation tests by means of innovative adsorbent nanomaterials[J]. Bulletin of Environmental Contamination and Toxicology,2021,106(3):421-427. doi: 10.1007/s00128-020-02898-7
    [8]
    王兴润, 李磊, 颜湘华, 等.铬污染场地修复技术进展[J]. 环境工程,2020,38(6):1-8.

    WANG X R, LI L, YAN X H, et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering,2020,38(6):1-8.
    [9]
    陈志良, 周建民, 蒋晓璐, 等.典型电镀污染场地重金属污染特征与环境风险评价[J]. 环境工程技术学报,2014,4(1):80-85.

    CHEN Z L, ZHOU J M, JIANG X L, et al. Pollution characteristics and environmental risk assessment of heavy metals in typical electroplating contaminated site[J]. Journal of Environmental Engineering Technology,2014,4(1):80-85.
    [10]
    WANG X R, LI L, YAN X H, et al. Processes of chromium (Ⅵ) migration and transformation in chromate production site: a case study from the middle of China[J]. Chemosphere,2020,257:127282. doi: 10.1016/j.chemosphere.2020.127282
    [11]
    周建军, 马宏瑞, 朱超, 等.制革污泥铬的形态与危险废物识别方法[J]. 化工进展,2017,36(4):1476-1481.

    ZHOU J J, MA H R, ZHU C, et al. Cr speciation and hazardous waste identification in tannery sludge[J]. Chemical Industry and Engineering Progress,2017,36(4):1476-1481.
    [12]
    XIA S P, SONG Z L, JEYAKUMAR P, et al. Characteristics and applications of biochar for remediating Cr(Ⅵ)-contaminated soils and wastewater[J]. Environmental Geochemistry and Health,2020,42(6):1543-1567. doi: 10.1007/s10653-019-00445-w
    [13]
    孟凡生, 王业耀, 李莉.PRB去除模拟地下水中六价铬的反应特性[J]. 环境工程技术学报,2013,3(2):92-97.

    MENG F S, WANG Y Y, LI L. Reactivity characteristics of hexavalent chromium removed by PRB in simulated ground water[J]. Journal of Environmental Engineering Technology,2013,3(2):92-97.
    [14]
    KANTAR C, CETIN Z, DEMIRAY H. In situ stabilization of chromium(Ⅵ) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids[J]. Journal of Hazardous Materials,2008,159(2/3):287-293.
    [15]
    TAKENO N. Intercomparison of thermodynamic databases[R]. Tsukuba: National Institute of Advanced Industrial Science and Technology, 2005: 153-155.
    [16]
    FARMER J G, THOMAS R P, GRAHAM M C, et al. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites[J]. Journal of Environmental Monitoring:JEM,2002,4(2):235-243. doi: 10.1039/b108681m
    [17]
    中关村中环地下水污染防控与修复产业联盟. 污染地下水原位注入修复技术指南: T/GIA 002—2019[S]. 北京: 中国标准出版社, 2019.
    [18]
    THORNTON E C, AMONETTE J E. Hydrogen sulfide gas treatment of Cr(Ⅵ)-contaminated sediment samples from a plating-waste disposal SiteImplications for in situ remediation[J]. Environmental Science & Technology,1999,33(22):4096-4101.
    [19]
    CLAIR E. In situ deliverability trials using calcium polysulphide to treat chromium contamination at Shawfield[R]. Glasgow: TDP Bulleti, 2013.
    [20]
    JAMES B R. Peer reviewed: the challenge of remediating chromium-contaminated soil[J]. Environmental Science & Technology,1996,30(6):248A-251A.
    [21]
    LUDWIG R D, SU C M, LEE T R, et al. In situ chemical reduction of Cr(Ⅵ) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation[J]. Environmental Science & Technology,2007,41(15):5299-5305.
    [22]
    SU C M, LUDWIG R D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite[J]. Environmental Science & Technology,2005,39(16):6208-6216.
    [23]
    PAN C, LIU H, CATALANO J G, et al. Rates of Cr(Ⅵ) generation from CrxFe1-x(OH)3 solids upon reaction with manganese oxide[J]. Environmental Science & Technology,2017,51(21):12416-12423.
    [24]
    PAN C, TROYER L D, CATALANO J G, et al. Dynamics of chromium(Ⅵ) removal from drinking water by iron electrocoagulation[J]. Environmental Science & Technology,2016,50(24):13502-13510.
    [25]
    LIN Y, CAI W, TIAN X, et al. Polyacrylonitrile/FeCl2 composite nanofibers, fabricated by electrospinning, exhibited excellent performance for Cr-removal from Cr2O72−-containing solutions in one step[J]. Journal of Materials Chemistry,2011,21:991-997. doi: 10.1039/C0JM02334E
    [26]
    刘美丽, 牛其建, 俞洋洋, 等.碳基材料负载纳米零价铁去除六价铬的研究进展[J]. 环境科学研究,2022,35(3):768-779.

    LIU M L, NIU Q J, YU Y Y, et al. Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J]. Research of Environmental Sciences,2022,35(3):768-779.
    [27]
    RIVERO-HUGUET M, MARSHALL W D. Reduction of hexavalent chromium mediated by micron- and nano-scale zero-valent metallic particles[J]. Journal of Environmental Monitoring:JEM,2009,11(5):1072-1079. doi: 10.1039/b819279k
    [28]
    SEAMAN J C, BERTSCH P M, SCHWALLIE L. In situ Cr(Ⅵ) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(Ⅱ) solutions[J]. Environmental Science & Technology,1999,33(6):938-944.
    [29]
    FAYBISHENKO B, HAZEN T C, LONG P E, et al. In situ long-term reductive bioimmobilization of Cr(Ⅵ) in groundwater using hydrogen release compound[J]. Environmental Science & Technology,2008,42(22):8478-8485.
    [30]
    RAMÍREZ-DÍAZ M I, DÍAZ-PÉREZ C, VARGAS E, et al. Mechanisms of bacterial resistance to chromium compounds[J]. BioMetals,2008,21(3):321-332. doi: 10.1007/s10534-007-9121-8
    [31]
    SUKLA L B, PRADHAN N, PANDA S, et al. Environmental microbial biotechnology[M]. Cham: Springer International Publishing, 2015.
    [32]
    JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium (Cr(Ⅵ)): a comprehensive review[J]. Chemosphere,2018,207:255-266. doi: 10.1016/j.chemosphere.2018.05.050
    [33]
    AHMAD W A, VENIL C K, NKHALAMBAYAUSI CHIRWA E M, et al. Bacterial reduction of Cr(Ⅵ): operational challenges and feasibility[J]. Current Pollution Reports,2021,7(2):115-127. doi: 10.1007/s40726-021-00174-8
    [34]
    TANG R B, SHEN L H, YANG L, et al. Killing two birds with one stone: biomineralized bacteria tolerate adverse environments and absorb hexavalent chromium[J]. ACS Omega,2022,7(18):15385-15395. doi: 10.1021/acsomega.1c06877
    [35]
    XIA S P, SONG Z L, JEYAKUMAR P, et al. A critical review on bioremediation technologies for Cr(Ⅵ)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology,2019,49(12):1027-1078. doi: 10.1080/10643389.2018.1564526
    [36]
    SINGH P, ITANKAR N, PATIL Y. Biomanagement of hexavalent chromium: current trends and promising perspectives[J]. Journal of Environmental Management,2021,279:111547. doi: 10.1016/j.jenvman.2020.111547
    [37]
    闫潇, 王建雷, 张明江, 等.微生物修复返溶铬污染场地的研究进展[J]. 生物工程学报,2021,37(10):3591-3603.

    YAN X, WANG J L, ZHANG M J, et al. Advances in microbial remediation of the re-dissolved chromium contaminated sites[J]. Chinese Journal of Biotechnology,2021,37(10):3591-3603.
    [38]
    施国静, 吴效俭, 王莹莹.细菌六价铬还原及吸附机制研究进展[J]. 微生物学报,2022,62(11):4287-4304. doi: 10.13343/j.cnki.wsxb.20220144

    SHI G J, WU X J, WANG Y Y. Mechanism of bacterial reduction and biosorption of hexavalent chromium[J]. Acta Microbiologica Sinica,2022,62(11):4287-4304. doi: 10.13343/j.cnki.wsxb.20220144
    [39]
    夏险, 李明顺, 武士娟, 等.微生物铬转化和抗性机制与生物修复研究进展[J]. 微生物学通报,2017,44(7):1668-1675.

    XIA X, LI M S, WU S J, et al. Research progress in microbial chromium-transformation and resistance and bioremediation[J]. Microbiology China,2017,44(7):1668-1675.
    [40]
    JACOBS J A. In situ remediation of heavy metals in groundwater[J]. Encyclopedia of Water,2005,1:1-5.
    [41]
    王泓泉.污染地下水可渗透反应墙(PRB)技术研究进展[J]. 环境工程技术学报,2020,10(2):251-259. doi: 10.12153/j.issn.1674-991X.20190129

    WANG H Q. Study on permeable reactive barrier technology for the remediation of polluted groundwater[J]. Journal of Environmental Engineering Technology,2020,10(2):251-259. doi: 10.12153/j.issn.1674-991X.20190129
    [42]
    李慧芳, 陈文芳, 陈磊磊, 等.原位化学修复技术在某Cr(Ⅵ)污染场地地下水应用研究[J]. 水资源与水工程学报,2022,33(3):81-88. doi: 10.11705/j.issn.1672-643X.2022.03.11

    LI H F, CHEN W F, CHEN L L, et al. Application of in situ chemical remediation technology to groundwater in a Cr(Ⅵ) contaminated site[J]. Journal of Water Resources and Water Engineering,2022,33(3):81-88. doi: 10.11705/j.issn.1672-643X.2022.03.11
    [43]
    王棣, 魏文侠, 王琳玲, 等.纳米铁原位注入技术对六价铬污染地下水的修复[J]. 环境工程学报,2018,12(2):521-526. doi: 10.12030/j.cjee.201706140

    WANG D, WEI W X, WANG L L, et al. Remediation of chromium (Ⅵ) contaminated groundwater by in situ injection of nanoscale zero valent iron[J]. Chinese Journal of Environmental Engineering,2018,12(2):521-526. doi: 10.12030/j.cjee.201706140
    [44]
    邱沙, 宋景鹏, 陈志国, 等.原位化学还原技术修复铬污染土壤及其工程应用[J]. 环境科学与技术,2021,44(4):131-139. doi: 10.19672/j.cnki.1003-6504.2021.04.017

    QIU S, SONG J P, CHEN Z G, et al. Remediation of chromium contaminated soil by in situ chemical reduction technology and its engineering application[J]. Environmental Science & Technology,2021,44(4):131-139. doi: 10.19672/j.cnki.1003-6504.2021.04.017
    [45]
    李敬杰, 蔡五田, 吕永高, 等.中试尺度下连续式可渗透反应墙修复Cr(Ⅵ)污染地下水效果评估[J]. 环境工程,2022,40(2):162-167.

    LI J J, CAI W T, LÜ Y G, et al. Effect evaluation of Cr(Ⅵ) contaminated groundwater remediation by permeable reactive wall in pilot scale[J]. Environmental Engineering,2022,40(2):162-167.
    [46]
    曹俊, 申源源, 张建, 等.原位修复某大埋深六价铬污染土壤的中试研究[J]. 环境工程,2019,37:921-926.

    CAO J, SHEN Y Y, ZHANG J, et al. Pilot-scale study on in-situ remediation of a heavily buried hexavalent chromium contaminated soil[J]. Environmental Engineering,2019,37:921-926.
    [47]
    车玉翠.不同铬修复技术中试应用研究[J]. 检验检疫学刊,2020,30(3):114-116.

    CHE Y C. Piolt study on different remediation technologies of chromium[J]. Journal of Inspection and Quarantine,2020,30(3):114-116.
    [48]
    刘益风, 李洁, 申源源, 等.重庆某六价铬污染场地土壤修复工程案例[J]. 广州化工,2019,47(12):111-114. doi: 10.3969/j.issn.1001-9677.2019.12.040

    LIU Y F, LI J, SHEN Y Y, et al. Soil remediation engineering instances of a hexavalent chromium contaminated site in Chongqing[J]. Guangzhou Chemical Industry,2019,47(12):111-114. doi: 10.3969/j.issn.1001-9677.2019.12.040
    [49]
    王廷涛, 郭贝, 赵志辉.铬污染土壤原位修复技术试验研究[J]. 中国环保产业,2021(1):61-64. doi: 10.3969/j.issn.1006-5377.2021.01.013

    WANG T T, GUO B, ZHAO Z H. Experimental study of the technology for in-situ remediation of chromium-contaminated soil[J]. China Environmental Protection Industry,2021(1):61-64. doi: 10.3969/j.issn.1006-5377.2021.01.013
    [50]
    邵乐, 刘晓月, 史学峰, 等.原位还原稳定化—高压旋喷注射技术修复铬污染场地中试研究[J]. 环境科学导刊,2018,37(4):54-57. doi: 10.13623/j.cnki.hkdk.2018.04.013

    SHAO L, LIU X Y, SHI X F, et al. Remediation of chromic-contaminated site by in situ reduction and stabilization-high pressure jet injection technology at pilot-scale studies[J]. Environmental Science Survey,2018,37(4):54-57. doi: 10.13623/j.cnki.hkdk.2018.04.013
    [51]
    刘松玉, 刘宜昭, 赵洁丽, 等.裂隙岩体含水层六价铬污染的修复[J]. 岩土工程学报,2020,42(3):413-420.

    LIU S Y, LIU Y Z, ZHAO J L, et al. Remediation of fractured rock aquifers contaminated by hexavalent chromium[J]. Chinese Journal of Geotechnical Engineering,2020,42(3):413-420.
    [52]
    张建荣, 李娟, 许伟.原位生物稳定固化技术在铬污染场地治理中的应用研究[J]. 环境科学,2013,34(9):3684-3689. doi: 10.13227/j.hjkx.2013.09.053

    ZHANG J R, LI J, XU W. Research on the application of in-situ biological stabilization solidification technology in chromium contaminated site management[J]. Environmental Science,2013,34(9):3684-3689. doi: 10.13227/j.hjkx.2013.09.053
    [53]
    余定坤, 尹炳奎.高压旋喷在某铬污染场地原位修复中的应用研究[J]. 广东化工,2020,47(10):106. doi: 10.3969/j.issn.1007-1865.2020.10.049

    YU D K, YIN B K. Study on application of high pressure jet grounting to in-situ repair of a chromium contaminated site[J]. Guangdong Chemical Industry,2020,47(10):106. doi: 10.3969/j.issn.1007-1865.2020.10.049
    [54]
    SONG X, WANG Q, JIN P, et al. Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(Ⅵ) removal from groundwater: a field-scale study[J]. Science of the Total Environment,2021,772:145495. doi: 10.1016/j.scitotenv.2021.145495
    [55]
    邓江兰, 朱泽民, 叶明强.某铬污染场地地下水可渗透反应墙技术(PRB)修复中试应用[J]. 湖南有色金属,2021,37(5):57-60. doi: 10.3969/j.issn.1003-5540.2021.05.017

    DENG J L, ZHU Z M, YE M Q. Pilot application of PRB remediation of groundwater in a chromium contaminated site[J]. Hunan Nonferrous Metals,2021,37(5):57-60. doi: 10.3969/j.issn.1003-5540.2021.05.017
    [56]
    WANG Q, SONG X, WEI C L, et al. in situ remediation of Cr(Ⅵ) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study[J]. Science of the Total Environment,2022,805:150260. doi: 10.1016/j.scitotenv.2021.150260
    [57]
    In-situ chromium treatability study results report Nevada environmental response trust site Henderson, Nevada[R]. Nevada: Tetra Tech, inc, 2018.
    [58]
    SEDLAZECK K P, VOLLPRECHT D, MÜLLER P, et al. Impact of an in situ Cr(Ⅵ)-contaminated site remediation on the groundwater[J]. Environmental Science and Pollution Research,2020,27(13):14465-14475. doi: 10.1007/s11356-019-07513-9
    [59]
    SLEJKO F F, PETRINI R, LUTMAN A, et al. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy[J]. Isotopes in Environmental and Health Studies,2019,55(1):56-69. doi: 10.1080/10256016.2018.1560278
    [60]
    NAZAROVA T, ALESSI D S, JANSSEN D J, et al. In situ biostimulation of Cr(Ⅵ) reduction in a fast-flowing oxic aquifer[J]. ACS Earth and Space Chemistry,2020,4(11):2018-2030. doi: 10.1021/acsearthspacechem.0c00200
    [61]
    VANBROEKHOVEN K, VERMOORTEL Y, DIELS L, et al. Stimulation of in situ bioprecipitation for the removal of hexavalent chromium from contaminated groundwater[C]//IMWA Symposium 2007: Water in Mining Environments. Italy: Cagliari R Cidu & F. Frau (Eds), 2007.
    [62]
    WANNER C, ZINK S, EGGENBERGER U, et al. Unraveling the partial failure of a permeable reactive barrier using a multi-tracer experiment and Cr isotope measurements[J]. Applied Geochemistry,2013,37:125-133. doi: 10.1016/j.apgeochem.2013.07.019
    [63]
    FLURY B, EGGENBERGER U, MÄDER U. First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediation of chromate contaminated groundwater[J]. Applied Geochemistry,2009,24(4):687-696. doi: 10.1016/j.apgeochem.2008.12.020
    [64]
    USCG. In situ permeable reactive barrier for treatment of contaminated groundwater at the US Coast Guard Support Center, Elizabeth City, North Carolina [R]. Elizabeth City, NC: US Coast Guard Support Center, 1998.
    [65]
    PULS R W, BLOWES D W, GILLHAM R W. Long-term performance monitoring for a permeable reactive barrier at the U. S. Coast Guard Support Center, Elizabeth City, North Carolina[J]. Journal of Hazardous Materials,1999,68(1/2):109-124.
    [66]
    BUTLER E C, CHEN L X, HANSEL C M, et al. Biological versus mineralogical chromium reduction: potential for reoxidation by Manganese oxide[J]. Environmental Science Processes & Impacts,2015,17(11):1930-1940.
    [67]
    WEN C Y, SHENG H, REN L M, et al. Study on the removal of hexavalent chromium from contaminated groundwater using emulsified vegetable oil[J]. Process Safety and Environmental Protection,2017,109:599-608. doi: 10.1016/j.psep.2017.05.004
    [68]
    ZHANG P, van NOSTRAND J D, HE Z L, et al. A slow-release substrate stimulates groundwater microbial communities for long-term in situ Cr(Ⅵ) reduction[J]. Environmental Science & Technology,2015,49(21):12922-12931. □
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(456) PDF Downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return