Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
CAO Y,LI Y H.Effect of urban spatial development on spatial and temporal variation of NO2 concentration in Wuchangshi Metropolitan Area[J].Journal of Environmental Engineering Technology,2023,13(3):921-928 doi: 10.12153/j.issn.1674-991X.20220366
Citation: CAO Y,LI Y H.Effect of urban spatial development on spatial and temporal variation of NO2 concentration in Wuchangshi Metropolitan Area[J].Journal of Environmental Engineering Technology,2023,13(3):921-928 doi: 10.12153/j.issn.1674-991X.20220366

Effect of urban spatial development on spatial and temporal variation of NO2 concentration in Wuchangshi Metropolitan Area

doi: 10.12153/j.issn.1674-991X.20220366
  • Received Date: 2022-04-20
  • In order to explore the impact of urban spatial development on NO pollution in Wuchangshi Metropolitan Area, the center of gravity of the north slope of Tianshan Mountain Economic Belt, multi-source remote sensing data was used to study the temporal and spatial variation of NO emissions in Wuchangshi Metropolitan Area. The results show that: based on the OMI remote sensing data from 2006 to 2020, according to the average amount of NO2 emission in Xinjiang, it is found that the low emission zone of NO2 in Xinjiang is Hotan and other small cities; the low emission zone is Kashgar and Hami and other regions; the medium emission zone 1 is in the western part of Xinjiang; the second high emission zone appears in the middle of Bayingoleng Mongolian Autonomous Prefecture, a medium-sized city on the southern slope, and the high pollution emission zone In the Wuchangshi Metropolitan Area. In terms of spatial pattern, the urban land and construction land are growing with one city and five urban districts of Urumqi as the main center, and Changji City, Fukang City and Shihezi City as the sub-centers. The urbanization process of Wuchangshi Metropolitan Area is accelerated, and the closer it is to the urban area, the more N. The higher the concentration, the higher the degree of pollution to the surrounding environment. During the second management in Wuchangshi Metropolitan Area, the concentration of NO decreased the most. The potential source contribution factor (PSCF) and concentration weight locus (CWT) of Wuchangshi Metropolitan Area were analyzed before and after the critical period of novel coronavirus (2019-2021). The results showed that the main potential source areas were the local region of Urumqi and the neighboring cities in the southwest of Changji Hui Autonomous Prefecture.

     

  • loading
  • [1]
    胡明远, 龚璞, 陈怀锦, 等.“十四五”时期我国城市群高质量发展的关键: 培育现代化都市圈[J]. 行政管理改革,2020(12):19-29. doi: 10.3969/j.issn.1674-7453.2020.12.003

    HU M Y, GONG P, CHEN H J, et al. The key to high-quality development of China's city clusters in the 14th Five-Year Plan period: building the modern metropolitan areas[J]. Administration Reform,2020(12):19-29. doi: 10.3969/j.issn.1674-7453.2020.12.003
    [2]
    ZHU Y J, ZHAN Y, WANG B, et al. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005-2016[J]. Chemosphere,2019,220:155-162. doi: 10.1016/j.chemosphere.2018.12.095
    [3]
    HAN L J, ZHOU W Q, LI W F, et al. Urbanization strategy and environmental changes: an insight with relationship between population change and fine particulate pollution[J]. Science of the Total Environment,2018,642:789-799. doi: 10.1016/j.scitotenv.2018.06.094
    [4]
    GROSSMAN G, KRUEGER A. Environmental impacts of a North American free trade agreement[R]. National Bureau of Economic Research, 1991.
    [5]
    朱杰, 许月阳, 姜岸, 等.超低排放下不同湿法脱硫协同控制颗粒物性能测试与研究[J]. 中国电力,2017,50(1):168-172. doi: 10.11930/j.issn.1004-9649.2017.01.168.05

    ZHU J, XU Y Y, JIANG A, et al. Test and study on performance of wet FGD coordinated particulate matter control for ultra-low pollutants emission[J]. Electric Power,2017,50(1):168-172. doi: 10.11930/j.issn.1004-9649.2017.01.168.05
    [6]
    木尼拉·阿不都木太力甫, 玉米提·哈力克, 塔依尔江·艾山, 等.乌鲁木齐市主要大气污染物浓度变化特征研究[J]. 生态环境学报,2018,27(3):533-541.

    MUNILA A, ÜMÜT H, TAYIERJIANG A, et al. Variation characteristics of the main atmospheric pollutant concentration in Urumqi[J]. Ecology and Environmental Sciences,2018,27(3):533-541.
    [7]
    汪蕊, 丁建丽, 马雯, 等.基于PSCF与CWT模型的乌鲁木齐市大气颗粒物源区分析[J]. 环境科学学报,2021,41(8):3033-3042. doi: 10.13671/j.hjkxxb.2021.0044

    WANG R, DING J L, MA W, et al. Analysis of atmospheric particulates source in Urumqi based on PSCF and CWT models[J]. Acta Scientiae Circumstantiae,2021,41(8):3033-3042. doi: 10.13671/j.hjkxxb.2021.0044
    [8]
    ZHAO S P, YU Y, QIN D H, et al. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China[J]. Atmospheric Pollution Research,2019,10(2):374-385. doi: 10.1016/j.apr.2018.08.014
    [9]
    WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
    [10]
    王琰玮, 王媛, 张增凯, 等.不同季节天津市PM2.5与O3潜在源区及传输路径分析[J]. 环境科学研究,2022,35(3):673-682.

    WANG Y W, WANG Y, ZHANG Z K, et al. Analysis of potential source areas and transport pathways of PM2.5 and O3 in Tianjin by season[J]. Research of Environmental Sciences,2022,35(3):673-682.
    [11]
    贺忠发, 曹月娥, 何浩天, 等.乌昌石地区城镇化与资源环境耦合协调研究[J]. 安徽农业科学,2022,50(1):86-91. doi: 10.3969/j.issn.0517-6611.2022.01.022

    HE Z F, CAO Y E, HE H T, et al. Research on the coupling coordination between urbanization and resources and environment in Wuchangshi area[J]. Journal of Anhui Agricultural Sciences,2022,50(1):86-91. doi: 10.3969/j.issn.0517-6611.2022.01.022
    [12]
    REN B, XIE P H, XU J, et al. Use of the PSCF method to analyze the variations of potential sources and transports of NO2, SO2, and HCHO observed by MAX-DOAS in Nanjing, China during 2019[J]. Science of the Total Environment,2021,782:146865. doi: 10.1016/j.scitotenv.2021.146865
    [13]
    赵晓蓉. 乌鲁木齐—昌吉地区城乡结合部大气NO2 时空动态变化研究[D]. 乌鲁木齐: 新疆师范大学, 2022.
    [14]
    苏锦涛, 张成歆, 胡启后, 等.基于卫星高光谱遥感的2007年—2017年新疆地区大气NO2时空变化趋势分析[J]. 光谱学与光谱分析,2021,41(5):1631-1638.

    SU J T, ZHANG C X, HU Q H, et al. Analysis of spatial and temporal change trend of Xinjiang NO2 in 2007-2017 based on satellite hyperspectral remote sensing[J]. Spectroscopy and Spectral Analysis,2021,41(5):1631-1638.
    [15]
    程韵初, 吴莹.基于OMI资料的中国对流层NO2柱浓度时空变化及其影响因子分析[J]. 地球物理学进展,2020,35(5):1644-1650. doi: 10.6038/pg2020DD0237

    CHENG Y C, WU Y. Spatiotemporal changes of tropospheric NO2 vertical column densities in China based on OMI data and its influencing factors[J]. Progress in Geophysics,2020,35(5):1644-1650. doi: 10.6038/pg2020DD0237
    [16]
    AHMAD S P, LEVELT P F, BHARTIA P K, et al. Atmospheric products from the ozone monitoring instrument (OMI)[C]//Optical Science and Technology. San Diego, 2003: 619-630.
    [17]
    YIENGER J J, LEVY H I. Empirical model of global soil-biogenic NOx emissions[J]. Journal of Geophysical Research:Atmospheres,1995,100(D6):11447-11464. doi: 10.1029/95JD00370
    [18]
    HE Y J, UNO I, WANG Z F, et al. Variations of the increasing trend of tropospheric NO2 over central East China during the past decade[J]. Atmospheric Environment,2007,41(23):4865-4876. doi: 10.1016/j.atmosenv.2007.02.009
    [19]
    WANG X Y. Impact of spatial structure of urban agglomerations on air pollution in China[J]. China Population, Resources and Environment,2020,30(10):28-35.
    [20]
    王桂玲, 杨德刚, 闫海龙, 等.中心城市发展与城市群产业整合发展研究: 以乌昌石城市群为例[J]. 干旱区研究,2016,33(2):434-440.

    WANG G L, YANG D G, YAN H L, et al. Development in central city and the industry integration in urban agglomeration: a case study on Urumqi-Changji-Shihezi Urban Agglomeration[J]. Arid Zone Research,2016,33(2):434-440.
    [21]
    李倩.跨界环境治理目标责任制的运行逻辑与治理绩效: 以京津冀大气治理为例[J]. 北京行政学院学报,2020(4):17-27. doi: 10.3969/j.issn.1008-7621.2020.04.003

    LI Q. The running logic and governance performance of the target-oriented responsibility system for cross-regional environmental governance: a case study of the air-pollution prevention and treatment in Beijing-Tianjin-Hebei[J]. Journal of Beijing Administration Institute,2020(4):17-27. doi: 10.3969/j.issn.1008-7621.2020.04.003
    [22]
    刘新春, 陈红娜, 赵克蕾, 等.乌鲁木齐大气细颗粒物PM2.5水溶性离子浓度特征及其来源分析[J]. 生态环境学报,2015,24(12):2002-2008.

    LIU X C, CHEN H N, ZHAO K L, et al. Analysis the effect and source on water-soluble ions of fine particulate matter (PM2.5) in Urumqi[J]. Ecology and Environmental Sciences,2015,24(12):2002-2008.
    [23]
    马莹萍, 李艳红, 闫晶洁.克拉玛依市NO2和SO2垂直柱浓度特征分析[J]. 中山大学学报(自然科学版),2021,60(5):94-102.

    MA Y P, LI Y H, YAN J J. The characteristics of NO2 and SO2 in column concentration over Karamay City[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(5):94-102.
    [24]
    刘岩. 乌鲁木齐大气重污染期NO2浓度及扩散轨迹研究[D]. 乌鲁木齐: 新疆师范大学, 2018.
    [25]
    赵晓蓉, 李艳红.天山北坡绿洲城市车流量与对流层NO2垂直柱浓度关系研究[J]. 光谱学与光谱分析,2021,41(2):345-353.

    ZHAO X R, LI Y H. Study on the relationship between urban traffic flow and tropospheric NO2 vertical column density in oasis on the north slope of Tianshan Mountain[J]. Spectroscopy and Spectral Analysis,2021,41(2):345-353.
    [26]
    TIAN X, XIE P H, XU J, et al. Long-term observations of tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta area, China[J]. Journal of Environmental Sciences,2018,71:207-221. doi: 10.1016/j.jes.2018.03.006
    [27]
    LI L, LU C, CHAN P W, et al. Impact of the COVID-19 on the vertical distributions of major pollutants from a tower in the Pearl River Delta[J]. Atmospheric Environment,2022,276:119068. doi: 10.1016/j.atmosenv.2022.119068
    [28]
    朱文东, 周廷刚, 李洪忠, 等.基于OMI数据的成渝城市群对流层NO2浓度遥感监测[J]. 长江流域资源与环境,2019,28(9):2239-2250.

    ZHU W D, ZHOU T G, LI H Z, et al. Remote sensing monitoring of tropospheric NO2 density in Chengdu-Chongqing Urban Agglomeration based on OMI data[J]. Resources and Environment in the Yangtze Basin,2019,28(9):2239-2250.
    [29]
    李艳红, 王莉莉, 赵晓蓉.奎屯市-独山子区-乌苏市区域大气对流层NO2柱浓度时空变化分析[J]. 环境科学研究,2021,34(9):2122-2131.

    LI Y H, WANG L L, ZHAO X R. Spatial and temporal variation of atmospheric tropospheric NO2 column concentration in Kuitun City, Dushanzi District and Wusu City[J]. Research of Environmental Sciences,2021,34(9):2122-2131.
    [30]
    宁一, 孙洁亚, 薛志钢, 等.受焦化影响的下风向城区臭氧污染特征及潜在源区分析[J]. 环境工程技术学报,2022,12(3):710-717. doi: 10.12153/j.issn.1674-991X.20210301

    NING Y, SUN J Y, XUE Z G, et al. Analysis of ozone pollution characteristics and potential sources of ozone pollution in downwind urban areas affected by coking[J]. Journal of Environmental Engineering Technology,2022,12(3):710-717. doi: 10.12153/j.issn.1674-991X.20210301
    [31]
    刘旻霞, 孙瑞弟, 宋佳颖, 等.基于OMI数据的新疆地区臭氧柱浓度研究[J]. 中国环境科学,2021,41(4):1498-1510.

    LIU M X, SUN R D, SONG J Y, et al. Research on ozone column concentration in Xinjiang based on OMI data[J]. China Environmental Science,2021,41(4):1498-1510. □
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article Views(181) PDF Downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return