Volume 12 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
DU H T,XU R,XU H,et al.Ammonia nitrogen removal by nitrifying bacteria from different habitats[J].Journal of Environmental Engineering Technology,2022,12(1):81-91 doi: 10.12153/j.issn.1674-991X.20210380
Citation: DU H T,XU R,XU H,et al.Ammonia nitrogen removal by nitrifying bacteria from different habitats[J].Journal of Environmental Engineering Technology,2022,12(1):81-91 doi: 10.12153/j.issn.1674-991X.20210380

Ammonia nitrogen removal by nitrifying bacteria from different habitats

doi: 10.12153/j.issn.1674-991X.20210380
  • Received Date: 2021-08-04
  • Nitrifying bacteria are one of the key functional groups in microbial nitrogen removal, and the screening of high-quality nitrifying bacteria is beneficial to enhancing nitrogen removal. The functions of nitrifying bacteria from river sediment, soil natural environment and artificial habitat in the market were compared, and their community structures were analyzed using molecular biological methods. The results showed that the activities of nitrifying bacteria from the sediment habitat and their resistance abilities to ammonia nitrogen, pH and salinity were higher than those from the other two habitats. The abundance and community structure analysis of nitrifying bacteria in each habitat by MPN-PCR and clone library profiling showed that the biomass of Nitrospira in the sediment habitat was high, which could promote the ammonia nitrogen removal rate of nitrifying bacteria in this habitat. For sediment nitrifying bacteria, the higher resistance to ammonium and pH was due to the presence of Nitrobacter, while the higher resistance ability to salinity was possibly due to the presence of salt-tolerant species or moderately halophilic specific genotypes of nitrifying bacteria in the habitat. In addition, these specific genotypes of nitrifying bacteria were identified as uncultured microbes by sequence alignment by Blast program.

     

  • loading
  • [1]
    SCHINDLER D W, HECKY R E, FINDLAY D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. PNAS,2008,105(32):11254-11258.
    [2]
    XU X C, ZHANG R, JIANG H B, et al. Sulphur-based autotrophic denitrification of wastewater obtained following graphite production: long-term performance, microbial communities involved, and functional gene analysis[J]. Bioresource Technology,2020,306:123117. doi: 10.1016/j.biortech.2020.123117
    [3]
    赵建国, 李洪波, 刘存歧, 等.永定河怀来段水体富营养化评价[J]. 环境工程技术学报,2018,8(3):248-256. doi: 10.3969/j.issn.1674-991X.2018.03.033

    ZHAO J G, LI H B, LIU C Q, et al. Evaluation of eutrophication of water body in Huailai section of Yongding River[J]. Journal of Environmental Engineering Technology,2018,8(3):248-256. doi: 10.3969/j.issn.1674-991X.2018.03.033
    [4]
    ZHANG Z W, HAN Y X, XU C Y, et al. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis[J]. Bioresource Technology,2018,262:65-73.
    [5]
    周少奇, 周吉林.生物脱氮新技术研究进展[J]. 环境污染治理技术与设备,2000(6):11-19.

    ZHOU S Q, ZHOU J L. The advances in investigation of new technologies on biological nitrogen removal[J]. Technigues and Equipment for Enviropollcont,2000(6):11-19.
    [6]
    VERSTRAETE W, FOCHT D D. Biochemical ecology of nitrification and denitrification[J]. Advances in Microbial Ecology, 1977. doi: 10.1007/978-1-4615-8219-9_4.
    [7]
    ZHANG L M, HU H W, SHEN J P, et al. Ammonia-oxidizing Archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal,2012,6(5):1032-1045. doi: 10.1038/ismej.2011.168
    [8]
    LÜCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(30):13479-13484. doi: 10.1073/pnas.1003860107
    [9]
    KAPOOR V, LI X A, ELK M, et al. Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria[J]. Environmental Science & Technology,2015,49(22):13454-13462.
    [10]
    GONZÁLEZ-CAMEJO J, APARICIO S, RUANO M V, et al. Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella[J]. Bioresource Technology,2019,290:121788.
    [11]
    GONZÁLEZ-CAMEJO J, MONTERO P, APARICIO S, et al. Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria[J]. Water Research,2020,172:115499. doi: 10.1016/j.watres.2020.115499
    [12]
    ZHANG D C, SU H, ANTWI P, et al. High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: efficiency, kinetics, and microbial community dynamics[J]. Science of the Total Environment,2019,692:741-755.
    [13]
    JEONG D, CHO K, LEE C H, et al. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor[J]. Process Biochemistry,2018,73:132-141. doi: 10.1016/j.procbio.2018.08.008
    [14]
    QIN W, LI W G, GONG X J, et al. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment[J]. Environmental Science and Pollution Research International,2017,24(24):19569-19582. doi: 10.1007/s11356-017-9522-3
    [15]
    张玲华, 邝哲师, 张宝玲.高效硝化细菌的富集培养与分离[J]. 浙江农业学报,2002,14(6):348-350. doi: 10.3969/j.issn.1004-1524.2002.06.011

    ZHANG L H, KUANG Z S, ZHANG B L. Research on enrichment and isolation techniques for high-efficient Nitrobacteria[J]. Acta Agriculturae Zhejiangensis,2002,14(6):348-350. doi: 10.3969/j.issn.1004-1524.2002.06.011
    [16]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17]
    PARK S J, ANDREI A Ş, BULZU P A, et al. Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation- and genomics-based approaches[J]. Applied and Environmental Microbiology,2020,86(22):e01667-20.
    [18]
    王博, 姚倩, 彭党聪, 等.双重抑制下亚硝化系统的启动及运行特性[J]. 环境工程学报,2017,11(3):1525-1532. doi: 10.12030/j.cjee.201511064

    WANG B, YAO Q A, PENG D C, et al. Start-up and operating performance of nitritation system with dual inhibition[J]. Chinese Journal of Environmental Engineering,2017,11(3):1525-1532. doi: 10.12030/j.cjee.201511064
    [19]
    ZHANG F, YANG H, WANG J W, et al. Effect of free ammonia inhibition on NOB activity in high nitrifying performance of sludge[J]. RSC Advances,2018,8(56):31987-31995. doi: 10.1039/C8RA06198J
    [20]
    LIU Y W, NGO H H, GUO W S, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: a review[J]. Environment International,2019,123:10-19. doi: 10.1016/j.envint.2018.11.039
    [21]
    张立成, 牛艺, 宋永会, 等.低碳氮比条件下膜生物反应器处理高氨氮废水时稳定亚硝化过程的建立[J]. 环境工程技术学报,2014,4(6):451-455. doi: 10.3969/j.issn.1674-991X.2014.06.071

    ZHANG L C, NIU Y, SONG Y H, et al. Establishment of stable nitritation process in a MBR reactor for treatment of high ammonia wastewater with low C/N ratio[J]. Journal of Environmental Engineering Technology,2014,4(6):451-455. doi: 10.3969/j.issn.1674-991X.2014.06.071
    [22]
    DUCEY T F, VANOTTI M B, SHRINER A D, et al. Characterization of a microbial community capable of nitrification at cold temperature[J]. Bioresource Technology,2010,101(2):491-500. doi: 10.1016/j.biortech.2009.07.091
    [23]
    尹军, 刘亮, 赵可, 等.不同温度对SBR腐殖活性污泥系统运行效能的影响[J]. 环境工程学报,2011,5(1):7-10.

    YIN J, LIU L A, ZHAO K, et al. Influence of different temperatures on operation efficiency of SBR humic active sludge system[J]. Chinese Journal of Environmental Engineering,2011,5(1):7-10.
    [24]
    MARTÍNEZ-LUQUE M, DOBAO M M, CASTILLO F. Characterization of the assimilatory and dissimilatory nitrate-reducing systems in Rhodobacter: a comparative study[J]. FEMS Microbiology Letters,1991,83(3):329-333. doi: 10.1111/j.1574-6968.1991.tb04485.x
    [25]
    BLUM J M, SU Q X, MA Y J, et al. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production[J]. Environmental Microbiology,2018,20(5):1623-1640. doi: 10.1111/1462-2920.14063
    [26]
    MENG J, LI J L, LI J Z, et al. Effect of temperature on nitrogen removal and biological mechanism in an up-flow microaerobic sludge reactor treating wastewater rich in ammonium and lack in carbon source[J]. Chemosphere,2019,216:186-194. doi: 10.1016/j.chemosphere.2018.10.132
    [27]
    TYSON R V, SIMONNE E H, TREADWELL D D, et al. Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters[J]. HortScience,2008,43(3):719-724. doi: 10.21273/HORTSCI.43.3.719
    [28]
    QUINLAN A V. Prediction of the optimum pH for ammonia-n oxidation by Nitrosomonas Europaea in well-aerated natural and domestic-waste waters[J]. Water Research,1984,18(5):561-566. doi: 10.1016/0043-1354(84)90204-5
    [29]
    VILLAVERDE S, GARCÍA-ENCINA P A, FDZ-POLANCO F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Research,1997,31(5):1180-1186. doi: 10.1016/S0043-1354(96)00376-4
    [30]
    ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation,1976,48(5):835-852.
    [31]
    BRAAM F, KLAPWIJK A. Effect of copper on nitrification in activated sludge[J]. Water Research,1981,15(9):1093-1098. doi: 10.1016/0043-1354(81)90077-4
    [32]
    谢佳胤, 王平, 李捍东, 等.毒性检测系统中硝化菌的分离鉴定及其特性研究[J]. 环境工程技术学报,2011,1(1):52-56. doi: 10.3969/j.issn.1674-991X.2011.01.009

    XIE J Y, WANG P, LI H D, et al. Isolation, identification and characterization of Nitrobacteria for the microbial toxicity testing system[J]. Journal of Environmental Engineering Technology,2011,1(1):52-56. doi: 10.3969/j.issn.1674-991X.2011.01.009
    [33]
    WANG J L, ZHOU J A, WANG Y M, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms[J]. Water Research,2020,177:115734. doi: 10.1016/j.watres.2020.115734
    [34]
    孙玉辉, 刘齐, 姜月, 等.蔬菜与餐厨垃圾厌氧发酵启动阶段微生物分析[J]. 环境工程学报,2014,8(1):310-316.

    SUN Y H, LIU Q, JIANG Y E, et al. Analysis of microorganism at starting stage of anaerobic fermentation of vegetable waste and restaurant garbage[J]. Chinese Journal of Environmental Engineering,2014,8(1):310-316.
    [35]
    CÉBRON A, BERTHE T, GARNIER J. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France)[J]. Applied and Environmental Microbiology,2003,69(12):7091-7100. doi: 10.1128/AEM.69.12.7091-7100.2003
    [36]
    SCHMID M, TWACHTMANN U, KLEIN M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology,2000,23(1):93-106. doi: 10.1016/S0723-2020(00)80050-8
    [37]
    GUO C Z, FU W, CHEN X M, et al. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch[J]. Water Research,2013,47(11):3845-3853. doi: 10.1016/j.watres.2013.04.005
    [38]
    SCHRAMM A, de BEER D, van den HEUVEL J C, et al. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors[J]. Applied and Environmental Microbiology,1999,65(8):3690-3696. doi: 10.1128/AEM.65.8.3690-3696.1999
    [39]
    GIESEKE A, PURKHOLD U, WAGNER M, et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm[J]. Applied and Environmental Microbiology,2001,67(3):1351-1362. doi: 10.1128/AEM.67.3.1351-1362.2001
    [40]
    BURRELL P C, KELLER J, BLACKALL L L. Microbiology of a nitrite-oxidizing bioreactor[J]. Applied and Environmental Microbiology,1998,64(5):1878-1883. doi: 10.1128/AEM.64.5.1878-1883.1998
    [41]
    JURETSCHKO S, TIMMERMANN G, SCHMID M, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations[J]. Applied and Environmental Microbiology,1998,64(8):3042-3051. doi: 10.1128/AEM.64.8.3042-3051.1998
    [42]
    BLACKBURNE R, VADIVELU V M, YUAN Z G, et al. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research,2007,41(14):3033-3042. doi: 10.1016/j.watres.2007.01.043
    [43]
    PARADES-AGUILAR J, ALMENDARIZ-TAPIA F J, VAÁZQUEZ-EUÁAN R, et al. Nitrogenized and chlorinated compounds pollutants from industrial wastewater: their environmental impacts and bioremediation strategies[M]. Boca Raton: CRC Press, 2021: 203-221.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(333) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return