Volume 12 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
WANG J P,QI Y M,MA Y P,et al.Study on the transport law of characteristic pollutants in red mud leachate in saturated sand[J].Journal of Environmental Engineering Technology,2022,12(4):1210-1216 doi: 10.12153/j.issn.1674-991X.20210257
Citation: WANG J P,QI Y M,MA Y P,et al.Study on the transport law of characteristic pollutants in red mud leachate in saturated sand[J].Journal of Environmental Engineering Technology,2022,12(4):1210-1216 doi: 10.12153/j.issn.1674-991X.20210257

Study on the transport law of characteristic pollutants in red mud leachate in saturated sand

doi: 10.12153/j.issn.1674-991X.20210257
  • Received Date: 2021-06-25
  • In order to reveal the pollution mechanism of red mud to groundwater and prevent the pollution, the water quality of leachate from a red mud pile site of an aluminium refinery in northern China was analyzed. Three characteristic pollutants severely exceeding standards were identified: F, SO4 2−, Al3+. Through a one-dimensional sand column experiment, the migration law of the characteristic pollutions in saturated medium sand, fine sand and silt sand was studied. The results showed that the greater the migration distance of characteristic pollutants in the sand column, the smaller the concentration of the pollutants; the smaller the sand particle size, the smaller the permeability coefficient, which means the stronger retention capacity of pollutants and the longer complete penetration time of characteristic pollutants in the sand column. Using Hydrus-1D software to simulate the migration process of the three characteristic pollutants in saturated sand, the dispersion degree ($\alpha$) of the medium sand, fine sand and silty sand was 1.76, 0.95 and 0.58 cm, respectively. The solute reaction parameters Kd and Nu of F in the three different sands were 2.10, 1.00, 4.10 mg/mL and 24, 28, 30 mL/mg; SO4 2− were 1.78, 0.99, 5.00 mg/mL and 12, 20, 32 mL/mg; Al3+ were 1.44, 1.65, 4.44 mg/mL and 18, 17, 45 mL/mg, respectively. It was displayed that the smaller the grain of sand, the stronger the adsorption capacity (larger Kd) and the faster the adsorption speed (larger Nu). In order to prevent the pollution of red mud, it was recommended to use silt soil or finer-grained clay as the pollution impermeable layer according to the principle of economy and convenience.

     

  • loading
  • [1]
    曲永新, 关文章, 张永双, 等.炼铝工业固体废料(赤泥)的物质组成与工程特性及其防治利用研究[J]. 工程地质学报,2000,8(3):296-305. doi: 10.3969/j.issn.1004-9665.2000.03.008

    QU Y X, GUAN W Z, ZHANG Y S, et al. Study on material composition and engineering properties, prevention and application of the solid waste (red mud) in aluminium industry[J]. Journal of Engineering Geology,2000,8(3):296-305. doi: 10.3969/j.issn.1004-9665.2000.03.008
    [2]
    郭书海, 高鹏, 吴波, 等.我国重点氟污染行业排放清单与土壤氟浓度估算[J]. 应用生态学报,2019,30(1):1-9.

    GUO S H, GAO P, WU B, et al. Fluorine emission list of China's key industries and soil fluorine concentration estimation[J]. Chinese Journal of Applied Ecology,2019,30(1):1-9.
    [3]
    袁霄梅, 王冰莹, 原学政, 等.赤泥中氟迁移转化的影响因素分析[J]. 中国岩溶,2010,29(3):319-324. doi: 10.3969/j.issn.1001-4810.2010.03.015

    YUAN X M, WANG B Y, YUAN X Z, et al. Analysis on the influence factors to fluorine transfer in red mud[J]. Carsologica Sinica,2010,29(3):319-324. doi: 10.3969/j.issn.1001-4810.2010.03.015
    [4]
    HE L L, TU C L, HE S Y, et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environmental Geochemistry and Health,2021,43(3):1137-1154. doi: 10.1007/s10653-020-00568-5
    [5]
    ABDUL-WAHAB S, ALSUBHI Z. Modeling and analysis of hydrogen fluoride pollution from an aluminum smelter located in Oman[J]. Sustainable Cities and Society,2019,51:101802. doi: 10.1016/j.scs.2019.101802
    [6]
    BEHROOZI A, ARORA M, FLETCHER T D, et al. Sorption and transport behavior of zinc in the soil: implications for stormwater management[J]. Geoderma,2020,367:114243. doi: 10.1016/j.geoderma.2020.114243
    [7]
    de SOUZA A L, MATSURA E E, de MIRANDA J H, et al. Adjustment of soil solute transport paramenters with Matlab 6.5[J]. Engineering Agriculture,2011,31(6):1064-1074.
    [8]
    AYOOB S, GUPTA A K. Fluoride in drinking water: a review on the status and stress effects[J]. Critical Reviews in Environmental Science and Technology,2006,36(6):433-487. doi: 10.1080/10643380600678112
    [9]
    胡鹏, 朱国荣, 王倩, 等.尾矿库淋滤液中氟垂向迁移的土柱淋滤试验[J]. 南京大学学报(自然科学版),2011,47(6):744-750.

    HU P, ZHU G R, WANG Q, et al. Column leaching tests for modeling vertical migration of fluorine contamination in tailings pond[J]. Journal of Nanjing University (Natural Sciences),2011,47(6):744-750.
    [10]
    LIU G J, ZHENG L G, QI C C, et al. Environmental geochemistry and health of fluorine in Chinese coals[J]. Environmental Geology,2007,52(7):1307-1313. doi: 10.1007/s00254-006-0569-6
    [11]
    张小茅, 周俊, 熊小锋, 等.地下水环境影响评价中污染物运移模拟软件的适宜性评估[J]. 环境科学研究,2019,32(1):10-16.

    ZHANG X M, ZHOU J, XIONG X F, et al. Evaluation of contaminant transport modeling software for groundwater environmental impact assessment[J]. Research of Environmental Sciences,2019,32(1):10-16.
    [12]
    杜龙, 刘晓峰, 汪金卫, 等.我国典型铜冶炼厂防渗设计探讨[J]. 有色金属科学与工程,2021,12(1):108-115.

    DU L, LIU X F, WANG J W, et al. Discussions on anti-seepage design of typical copper smelters in China[J]. Nonferrous Metals Science and Engineering,2021,12(1):108-115.
    [13]
    ZHU S F, ZHU D Y, WANG X H. Removal of fluorine from red mud (bauxite residue) by electrokinetics[J]. Electrochimica Acta,2017,242:300-306. doi: 10.1016/j.electacta.2017.05.040
    [14]
    禚文婧, 丁爱中, 贾文娟, 等.鄂尔多斯某燃煤电厂污染物在细砂和砂质粉土层中的运移规律[J]. 环境工程,2019,37(8):177-184.

    ZHUO W J, DING A Z, JIA W J, et al. Research on migration of pollutants from coal-fired power plants in the Ordos area in fine sand and sandy silt soil[J]. Environmental Engineering,2019,37(8):177-184.
    [15]
    梁蓉蓉, 张永波.基于Hydrus-1d及解析法的灰场氟化物迁移动态研究[J]. 水电能源科学,2017,35(5):49-53.

    LIANG R R, ZHANG Y B. Fluoride migration dynamic research based on Hydrus-1d and analytic solution in ash yard[J]. Water Resources and Power,2017,35(5):49-53.
    [16]
    BERGER T, MATHURIN F A, DRAKE H, et al. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks[J]. Science of the Total Environment,2016,569/570:948-960. doi: 10.1016/j.scitotenv.2016.06.002
    [17]
    田富强, 温洁, 胡宏昌, 等.滴灌条件下干旱区农田水盐运移及调控研究进展与展望[J]. 水利学报,2018,49(1):126-135.

    TIAN F Q, WEN J, HU H C, et al. Review on water and salt transport and regulation in drip irrigated fields in arid regions[J]. Journal of Hydraulic Engineering,2018,49(1):126-135.
    [18]
    阎婷婷, 吴剑锋.渗透系数的空间变异性对污染物运移的影响研究[J]. 水科学进展,2006,17(1):29-36. doi: 10.3321/j.issn:1001-6791.2006.01.005

    YAN T T, WU J F. Impacts of the spatial variation of hydraulic conductivity on the transport fate of contaminant plume[J]. Advances in Water Science,2006,17(1):29-36. doi: 10.3321/j.issn:1001-6791.2006.01.005
    [19]
    韩伟, 叶渊, 李彦希, 等.高氟地区电解铝厂场地氟污染特征及其风险评估[J]. 环境工程技术学报,2021,11(4):727-733. doi: 10.12153/j.issn.1674-991X.20200243

    HAN W, YE Y, LI Y X, et al. Fluorine pollution characteristics and risk assessment of electrolytic aluminum plant site in high fluoride area[J]. Journal of Environmental Engineering Technology,2021,11(4):727-733. doi: 10.12153/j.issn.1674-991X.20200243
    [20]
    何顺辉, 尹国盛, 安建杰, 等.新型GCL复合垂直防渗技术及其在填埋场的应用[J]. 环境卫生工程,2020,28(3):66-70.

    HE S H, YIN G S, AN J J, et al. New GCL composite vertical anti-seepage technology and its application in landfill[J]. Environmental Sanitation Engineering,2020,28(3):66-70. ◇
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article Views(188) PDF Downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return