Volume 11 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
ZHAN Liping, ZHAO Rui, YANG Tianxue, YU Yang. A bibliometric analysis of research development regarding big data-driven municipal waste management[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1217-1225. doi: 10.12153/j.issn.1674-991X.20210081
Citation: ZHAN Liping, ZHAO Rui, YANG Tianxue, YU Yang. A bibliometric analysis of research development regarding big data-driven municipal waste management[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1217-1225. doi: 10.12153/j.issn.1674-991X.20210081

A bibliometric analysis of research development regarding big data-driven municipal waste management

doi: 10.12153/j.issn.1674-991X.20210081
More Information
  • Corresponding author: ZHAO Rui E-mail: ruizhao@swjtu.edu.cn; YANG Tianxue E-mail: ytx13@126.com
  • Received Date: 2021-03-22
  • Publish Date: 2021-11-20
  • The bibliometric approach was used to develop a holistic review on the research progress of big data driven municipal waste management. By using the literatures retrieved by the core collection database of Web of Science during the period of 2010-2020, a number of bibliometric indicators were incorporated into statistical analysis, including number of articles, research institutions, source journals and keywords, to understand its research status, grasp its development trend and identify the research hotspots, so as to provide a scientific basis for promoting the informatization and intelligent management of municipal solid waste management. The results showed that: The number of articles published increased year by year during the predefined time period, but the total number of articles published was relatively small, a total of 83, indicating that the research still belonged to a new and cutting-edge field. Publication carriers mainly included journal articles, conference articles and review articles, among which articles were mainly published in journals such as Sustainability, Journal of Cleaner Production, and Waste Management and had high citation frequency. Existing studies mainly considered the application of two dimensions of data engineering and data science to achieve the node management and control of the whole lifecycle of municipal waste, in which the former mainly focused on data source acquisition to record the flow direction and information of the waste lifecycle, and the latter provided decision support for improving management efficiency through modeling and analyzing all kinds of big data.

     

  • loading
  • [1]
    SEROR N, PORTNOV B A. Identifying areas under potential risk of illegal construction and demolition waste dumping using GIS tools[J]. Waste Management, 2018, 75:22-29.
    doi: 10.1016/j.wasman.2018.01.027
    [2]
    TAIT P W, BREW J, CHE A, et al. The health impacts of waste incineration:a systematic review[J]. Australian and New Zealand Journal of Public Health, 2020, 44(1):40-48.
    doi: 10.1111/azph.v44.1
    [3]
    SONG M L, FISHER R, WANG J L, et al. Environmental performance evaluation with big data:theories and methods[J]. Annals of Operations Research, 2018, 270(1/2):459-472.
    doi: 10.1007/s10479-016-2158-8
    [4]
    IDWAN S, MAHMOOD I, ZUBAIRI J A, et al. Optimal management of solid waste in smart cities using Internet of Things[J]. Wireless Personal Communications, 2020, 110(1):485-501.
    doi: 10.1007/s11277-019-06738-8
    [5]
    SCHAFER B. D-waste:data disposal as challenge for waste management in the Internet of Things[J]. International Review of Information Ethics, 2014, 22:101-107.
    [6]
    KUO Y H, KUSIAK A. From data to big data in production research:the past and future trends[J]. International Journal of Production Research, 2019, 57(15/16):4828-4853.
    doi: 10.1080/00207543.2018.1443230
    [7]
    WANG W H, LU C. Visualization analysis of big data research based on Citespace[J]. Soft Computing, 2020, 24(11):8173-8186.
    doi: 10.1007/s00500-019-04384-7
    [8]
    LU W S, CHEN X, HO D C W, et al. Analysis of the construction waste management performance in Hong Kong:the public and private sectors compared using big data[J]. Journal of Cleaner Production, 2016, 112:521-531.
    doi: 10.1016/j.jclepro.2015.06.106
    [9]
    LU W S. Big data analytics to identify illegal construction waste dumping:a Hong Kong study[J]. Resources,Conservation and Recycling, 2019, 141:264-272.
    doi: 10.1016/j.resconrec.2018.10.039
    [10]
    LU W S, CHEN X, PENG Y, et al. Benchmarking construction waste management performance using big data[J]. Resources,Conservation and Recycling, 2015, 105:49-58.
    doi: 10.1016/j.resconrec.2015.10.013
    [11]
    LU W S, WEBSTER C, PENG Y, et al. Big data in construction waste management:prospects and challenges[J]. Detritus, 2018(4):129-139.
    [12]
    LEE C K M, WU T. Design and development waste management system in Hong Kong [C]//2014 IEEE International Conference on Industrial Engineering and Engineering Management.Selangor,Malaysia:IEEE, 2014:798-802.
    [13]
    TEIZER J, NEVE H, LI H, et al. Construction resource efficiency improvement by Long Range Wide Area Network tracking and monitoring[J]. Automation in Construction, 2020, 116:103245.
    doi: 10.1016/j.autcon.2020.103245
    [14]
    JIAO Z H, RAN L, ZHANG Y Z, et al. Data-driven approaches to integrated closed-loop sustainable supply chain design under multi-uncertainties[J]. Journal of Cleaner Production, 2018, 185:105-127.
    doi: 10.1016/j.jclepro.2018.02.255
    [15]
    ZHANG B, DU Z J, WANG B, et al. Motivation and challenges for e-commerce in e-waste recycling under “Big data” context:a perspective from household willingness in China[J]. Technological Forecasting and Social Change, 2019, 144:436-444.
    doi: 10.1016/j.techfore.2018.03.001
    [16]
    LI C Z, ZHAO Y Y, XIAO B, et al. Research trend of the application of information technologies in construction and demolition waste management[J]. Journal of Cleaner Production, 2020, 263:121458.
    doi: 10.1016/j.jclepro.2020.121458
    [17]
    WU Z Z, YU A T W, POON C S. Promoting effective construction and demolition waste management towards sustainable development:a case study of Hong Kong[J]. Sustainable Development, 2020, 28(6):1713-1724.
    doi: 10.1002/sd.v28.6
    [18]
    KORHONEN P, KAILA J H. Waste container weighing data processing to create reliable information of household waste generation[J]. Waste Management, 2015, 39:15-25.
    doi: 10.1016/j.wasman.2015.02.021
    [19]
    NISKA H, SERKKOLA A. Data analytics approach to create waste generation profiles for waste management and collection[J]. Waste Management, 2018, 77:477-485.
    doi: 10.1016/j.wasman.2018.04.033
    [20]
    BIN S, ZHIQUAN Y, JONATHAN L S C, et al. A big data analytics approach to develop industrial symbioses in large cities[J]. Procedia CIRP, 2015, 29:450-455.
    doi: 10.1016/j.procir.2015.01.066
    [21]
    SONG B, YEO Z, KOHLS P, et al. Industrial symbiosis:exploring big-data approach for waste stream discovery[J]. Procedia CIRP, 2017, 61:353-358.
    doi: 10.1016/j.procir.2016.11.245
    [22]
    KONTOGIANNI S, MOUSSIOPOULOS N. Investigation of the occupational health and safety conditions in Hellenic solid waste management facilities and assessment of the in situ hazard level[J]. Safety Science, 2017, 96:192-197.
    doi: 10.1016/j.ssci.2017.03.025
    [23]
    VLACHOKOSTAS C. Closing the loop between energy production and waste management:a conceptual approach towards sustainable development[J]. Sustainability, 2020, 12(15):5995.
    doi: 10.3390/su12155995
    [24]
    GONZÁLEZ-ALBO B, BORDONS M. Articles vs.proceedings papers:do they differ in research relevance and impact:a case study in the Library and Information Science field[J]. Journal of Informetrics, 2011, 5(3):369-381.
    doi: 10.1016/j.joi.2011.01.011
    [25]
    MEHO L I. Using Scopus’s CiteScore for assessing the quality of computer science conferences[J]. Journal of Informetrics, 2019, 13(1):419-433.
    doi: 10.1016/j.joi.2019.02.006
    [26]
    杨利军, 魏晓峰. 基于知识图谱的国外社会网络分析领域可视化研究[J]. 情报科学, 2011, 29(7):1041-1048.

    YANG L J, WEI X F. Visualization research in foreign social network analysis based on mapping knowledge domain[J]. Information Science, 2011, 29(7):1041-1048.
    [27]
    GUO P, TIAN W, LI H M, et al. Global characteristics and trends of research on construction dust:based on bibliometric and visualized analysis[J]. Environmental Science and Pollution Research, 2020, 27(30):37773-37789.
    doi: 10.1007/s11356-020-09723-y
    [28]
    ADEBAYO O S, KABBASHI A, ALAM M D Z. Ethical instrumentation of integrated waste management [C]//Proceedings of the 2nd International Postgraduate Conference on Infrastructure and Environment, 2010.
    [29]
    REVETRIA R, TESTA A, CASSETTARI L. A generalized simulation framework to manage logistics systems:a case study in waste management and environmental protection [C]//Proceedings of the 2011 Winter Simulation Conference (WSC).Phoenix,AZ,USA:IEEE, 2011:943-952.
    [30]
    MUKHERJEE A, DEY S, PAUL H S, et al. Utilising condor for data parallel analytics in an IoT context:an experience report [C]//Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing,Networking and Communications (WiMob).Lyon,France:IEEE, 2013:325-331.
    [31]
    LU J W, CHANG N B, LIAO L. Environmental informatics for solid and hazardous waste management:advances,challenges,and perspectives[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(15):1557-1656.
    doi: 10.1080/10643389.2012.671097
    [32]
    TEHRANI A, KARBASI H. A novel integration of hyper-spectral imaging and neural networks to process waste electrical and electronic plastics [C]// Proceedings of the 2017 IEEE Conference on Technologies for Sustainability (SusTech).Phoenix,AZ,USA:IEEE, 2017:1-5.
    [33]
    SHAHROKNI H, van der HEIJDE B, LAZAREVIC D, et al. Big data GIS analytics towards efficient waste management in Stockholm[C]//Proceedings of the 2014 Conference ICT for Sustainability. Stockholm,Sweden: Atlantis Press, 2014.
    [34]
    VU D D, KADDOUM G. A waste city management system for smart cities applications [C]//Proceedings of the 2017 Advances in Wireless and Optical Communications (RTUWO).Riga,Latvia:IEEE, 2017:225-229.
    [35]
    CHEN X, LU W S, LIAO S J. A framework of developing a big data platform for construction waste management:a Hong Kong study [C]//Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate, 2017.doi: 10.1007/978-981-10-0855-9_94.
    doi: 10.1007/978-981-10-0855-9_94
    [36]
    WEN Z G, HU S H, de CLERCQ D, et al. Design,implementation,and evaluation of an Internet of Things (IoT) network system for restaurant food waste management[J]. Waste Management, 2018, 73:26-38.
    doi: 10.1016/j.wasman.2017.11.054
    [37]
    RAVI S, JAWAHAR T. Smart city solid waste management leveraging semantic based collaboration [C]//Proceedings of the 2017 International Conference on Computational Intelligence in Data Science(ICCIDS).Chennai,India:IEEE, 2017:1-4.
    [38]
    FENG L Q, LU Y Q, ZHANG Y C, et al. Structure analysis and application of big data from the energy Internet in Laogang solid waste recycling base[J]. DEStech Transactions on Environment,Energy and Earth Sciences, 2017:258-263. doi: 10.12783/dteees/edep2017/15554.
    doi: 10.12783/dteees/edep2017/15554
    [39]
    BONILLA S, SILVA H, TERRA da SILVA M, et al. Industry 4.0 and sustainability implications:a scenario-based analysis of the impacts and challenges[J]. Sustainability, 2018, 10(10):3740.
    doi: 10.3390/su10103740
    [40]
    VRCHOTA J, PECH M, ROLÍNEK L, et al. Sustainability outcomes of green processes in relation to industry 4.0 in manufacturing:systematic review[J]. Sustainability, 2020, 12(15):5968.
    doi: 10.3390/su12155968
    [41]
    GARRIDO-HIDALGO C, RAMIREZ F J, OLIVARES T, et al. The adoption of Internet of Things in a circular supply chain framework for the recovery of WEEE:the case of lithium-ion electric vehicle battery packs[J]. Waste Management, 2020, 103:32-44.
    doi: 10.1016/j.wasman.2019.09.045
    [42]
    ZHANG A, ZHONG R Y, FAROOQUE M, et al. Blockchain-based life cycle assessment:an implementation framework and system architecture[J]. Resources,Conservation and Recycling, 2020, 152:104512.
    doi: 10.1016/j.resconrec.2019.104512
    [43]
    KABIRIFAR K, MOJTAHEDI M, WANG C X, et al. Construction and demolition waste management contributing factors coupled with reduce,reuse,and recycle strategies for effective waste management:a review[J]. Journal of Cleaner Production, 2020, 263:121265.
    doi: 10.1016/j.jclepro.2020.121265
    [44]
    PUSHPAMALI N, AGDAS D, ROSE T M. A review of reverse logistics:an upstream construction supply chain perspective[J]. Sustainability, 2019, 11(15):4143.
    doi: 10.3390/su11154143
    [45]
    ZHANG L Z, ATKINS A S. A decision support application in tracking construction waste using rule-based reasoning and RFID technology[J]. International Journal of Computational Intelligence Systems, 2015, 8(1):128.
    [46]
    WANG X V, WANG L H. A cloud-based production system for information and service integration:an Internet of Things case study on waste electronics[J]. Enterprise Information Systems, 2017, 11(7):952-968.
    doi: 10.1080/17517575.2016.1215539
    [47]
    GU F, MA B Q, GUO J F, et al. Internet of Things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management:an exploratory study[J]. Waste Management, 2017, 68:434-448.
    doi: 10.1016/j.wasman.2017.07.037
    [48]
    VAFEIADIS T, NIZAMIS A, PAVLOPOULOS V, et al. Data analytics platform for the optimization of waste management procedures [C]// Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS).Santorini,Greece:IEEE, 2019:333-338.
    [49]
    ZHAO R, LIU Y Y, ZHANG N, et al. An optimization model for green supply chain management by using a big data analytic approach[J]. Journal of Cleaner Production, 2017, 142:1085-1097.
    doi: 10.1016/j.jclepro.2016.03.006
    [50]
    SAHNI P, ARORA G, DUBEY A K. Healthcare waste management and application through big data analytics[M]//Data Science and Analytics.Singapore:Springer Singapore, 2018:72-79.
    [51]
    XU J Y, LU W S, YE M, et al. Is the private sector more efficient:big data analytics of construction waste management sectoral efficiency[J]. Resources,Conservation and Recycling, 2020, 155:104674.
    doi: 10.1016/j.resconrec.2019.104674
    [52]
    JIANG P, FAN Y V, ZHOU J Y, et al. Data-driven analytical framework for waste-dumping behaviour analysis to facilitate policy regulations[J]. Waste Management, 2020, 103:285-295.
    doi: 10.1016/j.wasman.2019.12.041
    [53]
    ELHASSAN R, AHMED M A, ABDALHALEM R. Smart waste management system for crowded area:makkah and holy sites as a model [C]//2019 4th MEC International Conference on Big Data and Smart City (ICBDSC).Muscat,Oman:IEEE, 2019:1-5.
    [54]
    NAKAJIMA M. Material flow cost accounting needs to collaborate with data science to establish sustainable management [C]//Proceedings of the 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE).Nadi,Fiji:IEEE, 2015:1-5.
    [55]
    BILAL M, OYEDELE L O, AKINADE O O, et al. Big data architecture for construction waste analytics (CWA):a conceptual framework[J]. Journal of Building Engineering, 2016, 6:144-156.
    doi: 10.1016/j.jobe.2016.03.002
    [56]
    WU F, NIU D J, DAI S J, et al. New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks[J]. Waste Management, 2020, 107:182-190.
    doi: 10.1016/j.wasman.2020.04.015
    [57]
    CHEN X, LU W S. Identifying factors influencing demolition waste generation in Hong Kong[J]. Journal of Cleaner Production, 2017, 141:799-811.
    doi: 10.1016/j.jclepro.2016.09.164
    [58]
    LU W S, CHEN X, PENG Y, et al. The effects of green building on construction waste minimization:triangulating ‘big data’ with ‘thick data’[J]. Waste Management, 2018, 79:142-152.
    doi: 10.1016/j.wasman.2018.07.030
    [59]
    LU W S, CHI B, BAO Z K, et al. Evaluating the effects of green building on construction waste management:a comparative study of three green building rating systems[J]. Building and Environment, 2019, 155:247-256.
    doi: 10.1016/j.buildenv.2019.03.050
    [60]
    MEHMOOD Y, AHMAD F, YAQOOB I, et al. Internet-of-things-based smart cities:recent advances and challenges[J]. IEEE Communications Magazine, 2017, 55(9):16-24.
    [61]
    ORALHAN Z, ORALHAN B, YIĞIT Y. Smart city application:Internet of Things (IoT) technologies based smart waste collection using data mining approach and ant colony optimization[J]. International Arab Journal of Information Technology, 2017, 14(4):423-427.
    [62]
    BERGLUND E Z, MONROE J G, AHMED I, et al. Smart infrastructure:a vision for the role of the civil engineering profession in smart cities[J]. Journal of Infrastructure Systems, 2020, 26(2):03120001.
    doi: 10.1061/(ASCE)IS.1943-555X.0000549
    [63]
    NAVGHANE S S, KILLEDAR M S, ROHOKALE V M. IoT based smart garbage and waste collection bin[J]. International Journal of Advanced Research in Electronics and Communication Engineering(IJARECE), 2016, 5(5):1576-1578.
    [64]
    RUTQVIST D, KLEYKO D, BLOMSTEDT F. An automated machine learning approach for smart waste management systems[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1):384-392.
    doi: 10.1109/TII.9424
    [65]
    AHMAD S, KIM D H. Quantum GIS based descriptive and predictive data analysis for effective planning of waste management[J]. IEEE Access, 2020, 8:46193-46205.
    doi: 10.1109/Access.6287639
    [66]
    KAMENIK L. The role of data management in resource recycling [C]//Proceedings of the 33rd International Business Information Management Association Conference, 2019.
    [67]
    LIMBA T, NOVIKOVAS A, STANKEVIČIUS A, et al. Big data manifestation in municipal waste management and cryptocurrency sectors:positive and negative implementation factors[J]. Sustainability, 2020, 12(7):2862.
    doi: 10.3390/su12072862
    [68]
    赵若楠, 马中, 乔琦, 等. 中国工业园区绿色发展政策对比分析及对策研究[J]. 环境科学研究, 2020, 33(2):511-518.

    ZHAO R N, MA Z, QIAO Q, et al. Comparative analysis of green development policies of China’s industrial parks and countermeasure research[J]. Research of Environmental Sciences, 2020, 33(2):511-518.
    [69]
    WANG W X, BAO J, YUAN S J, et al. Proposal for planning an integrated management of hazardous waste:chemical park,Jiangsu Province,China[J]. Sustainability, 2019, 11(10):2846.
    doi: 10.3390/su11102846
    [70]
    JOSHI C, SEAY J, BANADDA N. A perspective on a locally managed decentralized circular economy for waste plastic in developing countries[J]. Environmental Progress & Sustainable Energy, 2019, 38(1):3-11.
    [71]
    SCHILKOWSKI C, SHUKLA M, CHOUDHARY S. Quantifying the circularity of regional industrial waste across multi-channel enterprises[J]. Annals of Operations Research, 2020, 290(1):385-408.
    doi: 10.1007/s10479-019-03168-4
    [72]
    张艳艳, 景元书, 高庆先, 等. 我国城市固体废物处理情况及温室气体减排启示[J]. 环境科学研究, 2011, 24(8):909-916.

    ZHANG Y Y, JING Y S, GAO Q X, et al. Disposal situation of municipal solid waste in China and inspiration for GHG reduction[J]. Research of Environmental Sciences, 2011, 24(8):909-916.
    [73]
    张伯强, 席北斗, 高柏, 等. 基于层次分析法的模糊综合评判在危险废物填埋场场址比选中的应用[J]. 环境工程技术学报, 2016, 6(3):275-283.

    ZHANG B Q, XI B D, GAO B, et al. An optimization methodology for hazardous waste landfill sites based on analytic hierarchy process and fuzzy evaluation[J]. Journal of Environmental Engineering Technology, 2016, 6(3):275-283.
    [74]
    KAMDAR I, ALI S, BENNUI A, et al. Municipal solid waste landfill siting using an integrated GIS-AHP approach:a case study from Songkhla,Thailand[J]. Resources,Conservation and Recycling, 2019, 149:220-235.
    doi: 10.1016/j.resconrec.2019.05.027
    [75]
    RAMASAMI K, VELUMANI B. Location prediction for solid waste management:a genetic algorithmic approach [C]//2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC).Chennai,India:IEEE, 2016:1-5.
    [76]
    SHEKDAR A V. Sustainable solid waste management:an integrated approach for Asian countries[J]. Waste Management, 2009, 29(4):1438-1448.
    doi: 10.1016/j.wasman.2008.08.025
    [77]
    BEGUR H, DHAWADE M, GAUR N, et al. An edge-based smart mobile service system for illegal dumping detection and monitoring in San Jose [C]//Proceedings of the 2017 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced & Trusted Computed,Scalable Computing & Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).San Francisco,CA,USA:IEEE, 2017:1-6.
    [78]
    YOU Z J, WU C, ZHENG L Q, et al. An informatization scheme for construction and demolition waste supervision and management in China[J]. Sustainability, 2020, 12(4):1672.
    doi: 10.3390/su12041672
    [79]
    LU J W, CHANG N B, HUANG Y Q, et al. Developing a cyber-physical system for promoting green engineering of solid waste incineration [C]// Proceedings of the 2019 IEEE 16th International Conference on Networking,Sensing and Control (ICNSC).Banff,AB,Canada:IEEE, 2019:57-62.
    [80]
    RAY S, TAPADAR S, CHATTERJEE S K, et al. Optimizing routine collection efficiency in IoT based garbage collection monitoring systems [C]//Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC).Las Vegas,NV,USA:IEEE, 2018:84-90.
    [81]
    AAZAM M, ST-HILAIRE M, LUNG C H, et al. Cloud-based smart waste management for smart cities [C]//Proceedings of the 2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).Toronto,ON,Canada:IEEE, 2016:188-193.
    [82]
    IANIUK O, NOVIKOV B. Urban data querying:the city of Petrozavodsk waste problem[J]. Frontiers in Artificial Intelligence and Applications, 2014, 270:303-314.
    [83]
    COTET C E, DEAC G C, DEAC C N, et al. An innovative industry 4.0 cloud data transfer method for an automated waste collection system[J]. Sustainability, 2020, 12(5):1839.
    doi: 10.3390/su12051839
    [84]
    FISHER O J, WATSON N J, ESCRIG J E, et al. Considerations,challenges and opportunities when developing data-driven models for process manufacturing systems[J]. Computers & Chemical Engineering, 2020, 140:106881.
    doi: 10.1016/j.compchemeng.2020.106881
    [85]
    ANAGNOSTOPOULOS T, ZASLAVSKY A, MEDVEDEV A. Robust waste collection exploiting cost efficiency of IoT potentiality in Smart Cities [C]//Proceedings of the 2015 International Conference on Recent Advances in Internet of Things (RIoT).Singapore:IEEE, 2015:1-6.
    [86]
    MEDVEDEV A, ZASLAVSKY A, INDRAWAN-SANTIAGO M, et al. Storing and indexing IoT context for smart city applications [C]//Proceedings of the Internet of Things,Smart Spaces,and Next Generation Networks and Systems, 2016.doi: 10.1007/978-3-319-46301-8_10.
    doi: 10.1007/978-3-319-46301-8_10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(384) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return