Volume 11 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
CHEN Yan, XIA Rui, WANG Lu, SUN Mingdong, ZHANG Lujun, MA Shuqin, JIA Ruining, ZHANG Xiaojiao, YANG Zhongwen. Effects assessment of water environment treatment projects based on SWMM-EFDC coupling simulation in Xinfeng River Basin[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 777-788. doi: 10.12153/j.issn.1674-991X.20200283
Citation: CHEN Yan, XIA Rui, WANG Lu, SUN Mingdong, ZHANG Lujun, MA Shuqin, JIA Ruining, ZHANG Xiaojiao, YANG Zhongwen. Effects assessment of water environment treatment projects based on SWMM-EFDC coupling simulation in Xinfeng River Basin[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 777-788. doi: 10.12153/j.issn.1674-991X.20200283

Effects assessment of water environment treatment projects based on SWMM-EFDC coupling simulation in Xinfeng River Basin

doi: 10.12153/j.issn.1674-991X.20200283
More Information
  • Corresponding author: YANG Zhongwen E-mail: yangzw@craes.org.cn
  • Received Date: 2020-11-30
  • Publish Date: 2021-07-20
  • Scientific evaluation of the environmental effects of water environmental control projects is of great significance for the formulation and optimization of river and lake control schemes and the promotion of scientific pollution control. Xinfeng River Basin is an important water security area in the sub-center of Beijing, and the water pollution problem (black and smelly) was prominent. In order to scientifically evaluate the effects of water environment comprehensive control projects in the Xinfeng River, a technical method of engineering environmental effects assessment were established by coupling model of water-land integration based on SWMM and EFDC. The quantitative simulation evaluation of the environmental effects was carried out for the projects of watershed pollution interception and treatment, wetland construction, water diversion and replenishment, and initial rain regulation and storage. The results showed that the main factor affecting the effect of projects included pollution interception rate, wetland treatment standard, water quality and storage capacity of primary rain. Comprehensive projects and individual projects had made positive contributions to the improvement of water quality. In terms of average reduction rate of water quality concentration, the the project contribution was in the sequence of comprehensive projects (69.8%) > sewage interception (63.1%) > water diversion (51.7%) > wetland construction (50.5%) > initial rain storage (3.8%). In terms of average compliance rate, the sequence was comprehensive projects (96.7%) > sewage interception (85.2%) > wetland construction (32.6%) > water diversion (32.5%) > initial rain storage (0.9%). In terms of load reduction, the sequence was sewage interception (512.4 t/a) > comprehensive projects (319.3 t/a) > wetland construction (89.9 t/a) > initial rain storage (21.9 t/a)> water diversion (-62.6 t/a). The water-land integrated coupling model based on SWMM and EFDC had good applicability in the evaluation of water environment treatment engineering effect, and had certain guiding significance for water pollution control of urban rivers.

     

  • loading
  • [1]
    李斌, 柏杨巍, 刘丹妮, 等. 全国地级及以上城市建成区黑臭水体的分布、存在问题及对策建议[J]. 环境工程学报, 2019, 13(3):511-518.

    LI B, BAI Y W, LIU D N, et al. Nationwide distribution,problems,countermeasure proposals of black and odorous water bodies in built-up area of cities at prefecture level or above in China[J]. Chinese Journal of Environmental Engineering, 2019, 13(3):511-518.
    [2]
    崔晓冰, 蒲文鹏, 刘旭. 黑臭水体治理技术研究[J]. 广东化工, 2017, 44(6):118-119.

    CUI X B, PU W P, LIU X. Study on treatment technology of black-and-malodorous water body[J]. Guangdong Chemical Industry, 2017, 44(6):118-119.
    [3]
    胡晨. “十二五”渭河治理措施的水环境效应研究[D]. 西安:西北大学, 2016.
    [4]
    赵华菁, 戴晶晶, 盛铭军. 苏州市城区水环境治理实践及思考[J]. 中国给水排水, 2016, 32(22):48-52.

    ZHAO H J, DAI J J, SHENG M J. Practice and reflection on water environment treatment in urban area of Suzhou[J]. China Water & Wastewater, 2016, 32(22):48-52.
    [5]
    倪自荣. 临沂市沂河综合治理工程分析及其生态系统服务价值评价[D]. 泰安:山东农业大学, 2011.
    [6]
    尹民. 坪山河综合整治工程对水环境的影响评价[J]. 绿色科技, 2010(8):144-145.
    [7]
    曾超. 佛山汾江河综合整治工程后评价研究[D]. 武汉:华中科技大学, 2012.
    [8]
    袁鹏, 徐连奎, 可宝玲, 等. 南京市月牙湖黑臭水体整治与生态修复[J]. 环境工程技术学报, 2020, 10(5):696-701.

    YUAN P, XU L K, KE B L, et al. Treatment and ecological restoration of black and odorous water body in Yueya Lake in Nanjing City[J]. Journal of Environmental Engineering Technology, 2020, 10(5):696-701.
    [9]
    路金霞, 彭帅, 孙坦, 等. 沈阳市满堂河黑臭水体治理典型案例分析[J]. 环境工程技术学报, 2020, 10(5):711-718.

    LU J X, PENG S, SUN T, et al. Typical case analysis of the black and odorous water body treatment of Mantang River in Shenyang City[J]. Journal of Environmental Engineering Technology, 2020, 10(5):711-718.
    [10]
    徐凌悦. 临安市河道水环境污染减排方案研究[D]. 杭州:浙江大学, 2016.
    [11]
    唐莉华, 张思聪, 林文婧, 等. 北京温榆河流域水污染控制情景模拟与分析[J]. 水力发电学报, 2012, 31(4):156-161.

    TANG L H, ZHANG S C, LIN W J, et al. Scenario analysis of water pollution control in Wenyu River Basin in Beijing[J]. Journal of Hydroelectric Engineering, 2012, 31(4):156-161.
    [12]
    纵霄, 刘松平, 张亚, 等. 昌北水环境综合治理工程措施效果评估与分析[J]. 水力发电, 2018, 44(7):9-14.

    ZONG X, LIU S P, ZHANG Y, et al. Evaluation and analysis on the effects of water environment comprehensive treatment project at northern area of Nanchang City[J]. Water Power, 2018, 44(7):9-14.
    [13]
    郭英卓, 冯亚耐, 朱瑶. 漳卫新河治理工程水环境影响预测评价[J]. 海河水利, 2007(3):14-17.
    [14]
    卿晓霞, 张会波, 周健, 等. 伏牛溪水污染治理效果的数值模拟研究[J]. 环境工程学报, 2015, 9(1):65-72.

    QING X X, ZHANG H B, ZHOU J, et al. Numerical simulation research of water pollution control effect of Funiu River[J]. Chinese Journal of Environmental Engineering, 2015, 9(1):65-72.
    [15]
    王晓琴, 闵志华, 李傲. 平原河网地区典型小流域水环境治理工程环境效应评估[J]. 长江科学院院报, 2017, 34(8):24-29.

    WANG X Q, MIN Z H, LI A. Evaluation on water environment benefits of pollutant treatment projects for a typical small watershed in plain river network area[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(8):24-29.
    [16]
    夏琨, 王华, 秦文浩, 等. 水量调度对内秦淮河水质改善的效应评估[J]. 水资源保护, 2015, 31(2):74-78.

    XIA K, WANG H, QIN W H, et al. Assessment on effects of water quality improvement in Inner Qinhuai River by water dispatching[J]. Water Resources Protection, 2015, 31(2):74-78.
    [17]
    骆学军. 引滦入津黎河综合治理工程问题研究[D]. 天津:天津大学, 2005.
    [18]
    王健健, 逄勇, 朱心悦, 等. 基于多目标的小流域污染控制方案及效果:以苏州胥江小流域为例[J]. 水资源保护, 2013, 29(4):56-61.

    WANG J J, PANG Y, ZHU X Y, et al. Multi-objective based pollution control plan for small basins and effect assessment:a case study of Xujiang small basin in Suzhou City[J]. Water Resources Protection, 2013, 29(4):56-61.
    [19]
    周福, 潘安君, 楼春华. 北京市县域内水环境治理研究[J]. 中国水利, 2001(5):46.
    [20]
    刘晓雨, 霍涛. 新凤河黑臭水体治理现状研究[J]. 内蒙古水利, 2016(12):45-46.
    [21]
    周风华, 朱建奎, 戴翠琴. 北京市新凤河水环境综合治理措施研究[J]. 中国水运(下半月), 2013, 13(12):197-198.
    [22]
    朱磊, 李怀恩, 李家科, 等. 水文水质模型联合应用于水库水质预测研究[J]. 中国环境科学, 2012, 32(3):571-576.

    ZHU L, LI H E, LI J K, et al. Connecting hydrological and water quality models for prediction research of reservoir water quality[J]. China Environmental Science, 2012, 32(3):571-576.
    [23]
    郝璐, 王静爱. 基于SWAT-WEAP联合模型的西辽河支流水资源脆弱性研究[J]. 自然资源学报, 2012, 27(3):468-479.

    HAO L, WANG J A. Evaluate to water resources vulnerability using SWAT-WEAP model in tributary of Xiliaohe River[J]. Journal of Natural Resources, 2012, 27(3):468-479.
    [24]
    王晓青, 李哲. SWAT与MIKE21耦合模型及其在澎溪河流域的应用[J]. 长江流域资源与环境, 2015, 24(3):426-432.

    WANG X Q, LI Z. SWAT and MIKE21 coupled models and their application in the Pengxi Watershed[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3):426-432.
    [25]
    SHABANI A, ZHANG X D, ELL M. Modeling water quantity and sulfate concentrations in the Devils Lake Watershed using coupled SWAT and CE-QUAL-W2[J]. JAWRA Journal of the American Water Resources Association, 2017, 53(4):748-760.
    doi: 10.1111/jawr.2017.53.issue-4
    [26]
    MANSOOR S Z, LOUIE S, LIMA A T, et al. The spatial and temporal distribution of metals in an urban stream:a case study of the Don River in Toronto,Canada[J]. Journal of Great Lakes Research, 2018, 44(6):1314-1326.
    doi: 10.1016/j.jglr.2018.08.010
    [27]
    荣易, 秦成新, 孙傅, 等. SWAT模型在我国流域水环境模拟应用中的评估验证过程评价[J]. 环境科学研究, 2020, 33(11):2571-2580.

    RONG Y, QIN C X, SUN F, et al. Assessment of evaluation process of SWAT model application in China[J]. Research of Environmental Sciences, 2020, 33(11):2571-2580.
    [28]
    朱瑶, 梁志伟, 李伟, 等. 流域水环境污染模型及其应用研究综述[J]. 应用生态学报, 2013, 24(10):3012-3018.

    ZHU Y, LIANG Z W, LI W, et al. Watershed water environment pollution models and their applications:a review[J]. Chinese Journal of Applied Ecology, 2013, 24(10):3012-3018.
    [29]
    周刚, 熊勇峰, 呼婷婷, 等. 地表水水质模型综合评价技术体系研究[J]. 环境科学研究, 2020, 33(11):2561-2570.

    ZHOU G, XIONG Y F, HU T T, et al. Comprehensive evaluation technology system for surface water quality models[J]. Research of Environmental Sciences, 2020, 33(11):2561-2570.
    [30]
    常晓栋, 徐宗学, 赵刚, 等. 山前平原型城市雨洪模拟与应用:以济南市为例[J]. 水力发电学报, 2018, 37(5):107-116.

    CHANG X D, XU Z X, ZHAO G, et al. Simulation of urban rainfall-runoff in piedmont cities:case study of Jinan City,China[J]. Journal of Hydroelectric Engineering, 2018, 37(5):107-116.
    [31]
    宋芳, 秦华鹏, 陈斯典, 等. 深圳河湾流域水污染源解析研究[J]. 北京大学学报(自然科学版), 2019, 55(2):317-328.

    SONG F, QIN H P, CHEN S D, et al. Water source apportionment of pollutions in Shenzhen bay basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2):317-328.
    [32]
    任伯帜, 邓仁健, 李文健. SWMM模型原理及其在霞凝港区的应用[J]. 水运工程, 2006(4):41-44.

    REN B Z, DENG R J, LI W J. Principles of SWMM model and its application in Xianing Port area[J]. Port & Waterway Engineering, 2006(4):41-44.
    [33]
    闫磊, 熊立华, 王景芸. 基于SWMM的武汉市典型城区降雨径流模拟分析[J]. 水资源研究, 2014, 3(3):12.

    YAN L, XIONG L H, WANG J Y. Analysis of storm runoff simulation in typical urban region of Wuhan based on SWMM[J]. Journal of Water Resources Research, 2014, 3(3):12.
    [34]
    RANDALL M, SUN F B, ZHANG Y Y, et al. Evaluating sponge city volume capture ratio at the catchment scale using SWMM[J]. Journal of Environmental Management, 2019, 246:745-757.
    doi: 10.1016/j.jenvman.2019.05.134
    [35]
    郑瑶, 胡学斌, 何强, 等. 基于EFDC模型的重庆库区水环境容量研究[J]. 三峡生态环境监测, 2019, 4(2):9-16.

    ZHENG Y, HU X B, HE Q, et al. Water environment capacity in Three Gorges Reservior(Chongqing section) based on EFDC model[J]. Ecology and Environmental Monitoring of Three Gorges, 2019, 4(2):9-16.
    [36]
    SHEN Z Y, CHEN X F, ZHAO X, et al. The influence of parameter uncertainty on phosphorus modeling:a case study of EFDC model application to the Three Gorges Reservoir Region,China[J]. Fresenius Environmental Bulletin, 2014, 23(1):264-273.
    [37]
    范一鸣. 基于EFDC模拟的污水泄露事件对松花江哈尔滨段水质影响研究[D]. 哈尔滨:哈尔滨师范大学, 2017.
    [38]
    HUANG A, PENG W, LIU X, et al. Characteristics and factors influencing the hysteresis of water area:stage curves for Poyang Lake[J]. Water, 2017, 9(12):938.
    doi: 10.3390/w9120938
    [39]
    HONG B, LIU Z H, SHEN J, et al. Potential physical impacts of sea-level rise on the Pearl River Estuary,China[J]. Journal of Marine Systems, 2020, 201:103245.
    doi: 10.1016/j.jmarsys.2019.103245
    [40]
    ARIFIN R R, JAMES S C, de ALWIS PITTS D A, et al. Simulating the thermal behavior in Lake Ontario using EFDC[J]. Journal of Great Lakes Research, 2016, 42(3):511-523.
    doi: 10.1016/j.jglr.2016.03.011
    [41]
    KIM J, LEE T, SEO D. Algal bloom prediction of the lower Han River,Korea using the EFDC hydrodynamic and water quality model[J]. Ecological Modelling, 2017, 366:27-36.
    doi: 10.1016/j.ecolmodel.2017.10.015
    [42]
    张鹏, 逄勇, 石成春, 等. 基于EFDC的闽江干流下游DO变化研究[J]. 水资源保护, 2016, 32(5):91-96.

    ZHANG P, PANG Y, SHI C C, et al. Study of variation of dissolved oxygen in lower reaches of main stream of Minjiang River based on EFDC model[J]. Water Resources Protection, 2016, 32(5):91-96.
    [43]
    GAO Q F, HE G J, FANG H W, et al. Numerical simulation of water age and its potential effects on the water quality in Xiangxi Bay of Three Gorges Reservoir[J]. Journal of Hydrology, 2018, 566:484-499.
    doi: 10.1016/j.jhydrol.2018.09.033
    [44]
    郁达伟, 于淼, 魏源送, 等. 1980—2010年温榆河的水环境质量时空演变特征[J]. 环境科学学报, 2012, 32(11):2803-2813.

    YU D W, YU M, WEI Y S, et al. Spatio-temporal evolution of water environment quality in Wenyu River during 1980-2010[J]. Acta Scientiae Circumstantiae, 2012, 32(11):2803-2813.
    [45]
    郑凡东, 孟庆义, 王培京, 等. 北京市温榆河水环境现状及治理对策研究[J]. 北京水务, 2007(5):5-8.

    ZHENG F D, MENG Q Y, WANG P J, et al. Study on status and improvement strategies of water environment in Wenyu River of Beijing[J]. Beijing Water, 2007(5):5-8.
    [46]
    廖朝轩, 蔡耀隆, 黄伟民, 等. 雨水滞蓄措施在城区减洪之水文机制及容量研究[J]. 水科学进展, 2006, 17(4):538-542.

    LIAW C S, TSAI Y L, HUANG W M, et al. Hydrology and storage capacity analysis of rainwater retarding practices for flood mitigation in urban area[J]. Advances in Water Science, 2006, 17(4):538-542.
    [47]
    王亚炜, 杜向群, 郁达伟, 等. 温榆河氨氮污染控制措施的效果模拟[J]. 环境科学学报, 2013, 33(2):479-486.

    WANG Y W, DU X Q, YU D W, et al. Assessment of ammonia nitrogen pollution control in Wenyu River by QUAL2K simulation[J]. Acta Scientiae Circumstantiae, 2013, 33(2):479-486.
    [48]
    李凤欢. SWAT模型在大沙河水库流域的面源污染模拟研究[D]. 广州:暨南大学, 2014.
    [49]
    李业辉, 骆志伟. 基于MIKE11的沈阳市南北运河水质水量调控模拟[J]. 建筑与预算, 2020(5):62-67.
    [50]
    侯晓辉, 周倩, 邢宝龙, 等. 灌河生态修复人工湿地的水动力水质模拟[J]. 人民黄河, 2020, 42(3):68-72.

    HOU X H, ZHOU Q, XING B L, et al. Hydrodynamic and water quality model of constructed wetland ecological restoration in Guanhe River Basin[J]. Yellow River, 2020, 42(3):68-72.
    [51]
    胡琪勇. 滇中引水工程对滇池草海水质改善效果预测与评价[D]. 昆明:昆明理工大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(790) PDF Downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return