Volume 11 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
HAN Wei, YE Yuan, LI Yanxi, TIAN Yu, LI Yafeng. Fluorine pollution characteristics and risk assessment of electrolytic aluminum plant site in high fluoride area[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 727-733. doi: 10.12153/j.issn.1674-991X.20200243
Citation: HAN Wei, YE Yuan, LI Yanxi, TIAN Yu, LI Yafeng. Fluorine pollution characteristics and risk assessment of electrolytic aluminum plant site in high fluoride area[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 727-733. doi: 10.12153/j.issn.1674-991X.20200243

Fluorine pollution characteristics and risk assessment of electrolytic aluminum plant site in high fluoride area

doi: 10.12153/j.issn.1674-991X.20200243
More Information
  • Corresponding author: YE Yuan E-mail: yeyuan@centerint.com
  • Received Date: 2020-10-10
  • Publish Date: 2021-07-20
  • Based on the environmental investigation of the fluorine-contaminated site located at a typical fluorine rich region in China, the distribution characteristics of fluoride pollution level were analyzed, the underground migration characteristics of fluoride in different depth soil layers in the heavily polluted areas investigated, and the environmental risk effect of fluoride of the sites evaluated based on different landuse functions. The results showed that the concentrations of fluoride in surface soil ranged from 3 340 to 38 400 mg/kg, while the water-soluble fluoride content ranged from 0.06 to 25.40 mg/L. The over-standard rate was as high as 96% compared with the local soil fluoride background value. The occurrence forms of fluoride in soil were mainly residual state with percentage of 93.88% and the water-soluble percentage was 0.85%. The underground migration behaviours of fluoride were affected by soil types of the contaminated site, where the fluorine was strongly adsorbed and detained by the clay layer. The healthy risk was over the acceptable level when the contaminated site was used as the Classification Ⅰ lands, represented by residential land. If it was used as Classification Ⅱ lands, represented by industrial land, its hazard did not exceed the acceptable risk level.

     

  • loading
  • [1]
    MIKKONEN H G, van de GRAAFF R, MIKKONEN A T, et al. Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil[J]. Environmental Pollution, 2018, 242:1838-1849.
    doi: 10.1016/j.envpol.2018.07.083
    [2]
    郭书海, 高鹏, 吴波, 等. 我国重点氟污染行业排放清单与土壤氟浓度估算[J]. 应用生态学报, 2019, 30(1):1-9.

    GUO S H, GAO P, WU B, et al. Fluorine emission list of China’s key industries and soil fluorine concentration estimation[J]. Chinese Journal of Applied Ecology, 2019, 30(1):1-9.
    [3]
    顾晋饴, 张俊, 王俊杰, 等. 江苏省光伏电池行业污泥产排污特征[J]. 环境工程技术学报, 2018, 8(3):343-348.

    GU J Y, ZHANG J, WANG J J, et al. Characteristics of sludge generation and discharge from photovoltaic cell industry in Jiangsu Province[J]. Journal of Environmental Engineering Technology, 2018, 8(3):343-348.
    [4]
    SENKONDO Y H, MKUMBO S, SOSPETER P. Fluorine and copper accumulation in lettuce grown on fluoride and copper contaminated soils[J]. Communications in Soil Science and Plant Analysis, 2018, 49(21):2638-2652.
    doi: 10.1080/00103624.2018.1526950
    [5]
    ZHANG J J, YU L, YANG H B, et al. Migration and transformation of fluoride through fluoride-containing water for the irrigation of a soil-plant system[J]. Human and Ecological Risk Assessment:An International Journal, 2019, 25(4):1048-1058.
    doi: 10.1080/10807039.2018.1460577
    [6]
    成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3):265-306.

    CHENG H X, LI K, LI M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3):265-306.
    [7]
    孟伟, 潘自平, 何邵麟, 等. 西南氟病区典型高氟土壤的地球化学特征及氟富集原因[J]. 地球与环境, 2012, 40(2):144-147.

    MENG W, PAN Z P, HE S L, et al. Element geochemistry and fluoride enrichment mechanism in high-fluoride soils of endemic fluorosis-affected areas in southwest China[J]. Earth and Environment, 2012, 40(2):144-147.
    [8]
    潘自平, 刘新红, 孟伟, 等. 贵阳中心区土壤氟的地球化学特征及其环境质量评价[J]. 环境科学研究, 2018, 31(1):87-94.

    PAN Z P, LIU X H, MENG W, et al. Geochemical characteristics of fluorine in soils and its environmental quality in central district of Guiyang[J]. Research of Environmental Sciences, 2018, 31(1):87-94.
    [9]
    易春瑶, 汪丙国, 靳孟贵. 华北平原典型区土壤氟的形态及其分布特征[J]. 环境科学, 2013, 34(8):3195-3204.

    YI C Y, WANG B G, JIN M G. Fluorine speciation and its distribution characteristics in selected agricultural soils of North China Plain[J]. Environmental Science, 2013, 34(8):3195-3204.
    [10]
    北京市质量技术监督局. 场地土壤环境风险评价筛选值:DB 11/T811—2011[S/OL].( 2011-12-06)[2020-09-18]. http://sthjj.beijing.gov.cn/so/s.
    [11]
    广东省质量技术监督局. 土壤重金属风险评价筛选值 珠江三角洲:DB44/T 1415—2014[S/OL].( 2014-08-18)[2020-09-18]. http://www.18ben.com/index/tiaomuview/qdid/0/id/32306.
    [12]
    重庆市质量技术监督局. 场地土壤环境风险评估筛选值:DB50/T 723—2016[S/OL].( 2017-09-17)[2020-09-08]. http://www.cqjnw.org/article.php?id=8798.
    [13]
    张志鹏, 孙东, 赵驰, 等. 成都经济区某电解铝企业周边土壤和地下水环境调查研究[J]. 四川地质学报, 2019, 39(增刊1):126-131.
    [14]
    EGLI M, DÜRRENBERGER S, FITZE P. Spatio-temporal behaviour and mass balance of fluorine in forest soils near an aluminium smelting plant:short- and long-term aspects[J]. Environmental Pollution, 2004, 129(2):195-207.
    doi: 10.1016/j.envpol.2003.10.005
    [15]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [16]
    环境保护部. 土壤水溶性氟化物和总氟化物的测定离子选择电极法:HJ 873—2017[S]. 北京: 中国环境出版社, 2017.
    [17]
    桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4):284-286.

    GUI J Y, HAN Z T, ZHANG X Y, et al. Speciation analysis of fluorine in soil samples[J]. Rock and Mineral Analysis, 2008, 27(4):284-286.
    [18]
    US Environmental Protection Agency.Example exposure scenarios assessment tool[EB/OL].[2021-01-18]. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=85843.
    [19]
    生态环境部. 建设用地土壤污染风险评估技术导则:HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2019.
    [20]
    US Environmental Protection Agency.Regional screening levels (RSLs)-generic tables[A/OL].( 2017-01-19)[2020-09-20]. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.
    [21]
    王硕, 魏文侠, 李佳斌, 等. 某钢铁厂土壤中多环芳烃污染评价与风险评估[J]. 环境工程技术学报, 2019, 9(4):447-452.

    WANG S, WEI W X, LI J B, et al. Evaluation and risk assessment of polycyclic aromatic hydrocarbons in soil of a steel plant[J]. Journal of Environmental Engineering Technology, 2019, 9(4):447-452.
    [22]
    AN J, LEE H A, LEE J, et al. Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea[J]. Chemosphere, 2015, 119:577-582.
    doi: 10.1016/j.chemosphere.2014.07.043
    [23]
    赵雪, 蔡淑芬. 钢铁工业废气中重金属及氟化物通过大气沉降对土壤的影响规律研究[J]. 生态环境与保护, 2019, 2(10):7-8.
    [24]
    李日邦. 土壤吸附氟的能力及其生态学意义[J]. 环境科学学报, 1991, 11(3):263-268.

    LI R B. Adsorption of fluoride on soils[J]. Acta Scientiae Circumstantiae, 1991, 11(3):263-268.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(372) PDF Downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return