Volume 11 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
WANG Mingming, WEI Jun, HUANG Rongmin, KONG Lingwei, LI Zhongjian, YANG Bin. Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 769-776. doi: 10.12153/j.issn.1674-991X.20200199
Citation: WANG Mingming, WEI Jun, HUANG Rongmin, KONG Lingwei, LI Zhongjian, YANG Bin. Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 769-776. doi: 10.12153/j.issn.1674-991X.20200199

Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism

doi: 10.12153/j.issn.1674-991X.20200199
More Information
  • Corresponding author: WEI Jun E-mail: wei_j@ecidi.com
  • Received Date: 2020-08-13
  • Publish Date: 2021-07-20
  • The filler is the main medium of constructed wetland, especially the bed of subsurface flow constructed wetland. It is the main carrier of wetland physical, chemical and biological reaction, and has a decisive influence on the removal of contaminants. The literature on the sources, physical properties and chemical composition of common substrate media and practical applications were reviewed, including natural product fillers, industrial/agriculture by-product fillers and synthesis fillers. The mechanisms of substrate media for contaminants removal in water were summarized, including adsorption-sedimentation, ion exchange, slow-release carbon source- electron donor, oxidation-reduction. The removal ability of nitrogen, phosphorus and heavy metal pollutants in subsurface flow wetland was discussed, and the removal effect of different fillers was compared. Finally, the selection of subsurface constructed wetland fillers and prospects for strategy research in the future were prospected, in order to provide scientific guidance and theoretical basis for the further development of constructed wetland and wastewater treatment technology.

     

  • loading
  • [1]
    DOHERTY L, ZHAO Y, ZHAO X, et al. A review of a recently emerged technology:constructed wetland-microbial fuel cells[J]. Water Research, 2015, 85(15):38-45.
    doi: 10.1016/j.watres.2015.08.016
    [2]
    VOHLA C, KÕIV M, BAVOR H J, et al. Filter materials for phosphorus removal from wastewater in treatment wetlands:a review[J]. Ecological Engineering, 2011, 37(1):70-89.
    doi: 10.1016/j.ecoleng.2009.08.003
    [3]
    YANG Y, ZHAO Y, LIU R, et al. Global development of various emerged substrates utilized in constructed wetlands[J]. Bioresource Technology, 2018, 261:441-452.
    doi: 10.1016/j.biortech.2018.03.085
    [4]
    WANG Y, CAI Z, SHENG S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands[J]. Science of the Total Environment, 2020, 701:1-14.
    [5]
    INGRAO C, FAILLA S, ARCIDIACONO C. A comprehensive review of environmental and operational issues of constructed wetland systems[J]. Current Opinion in Environmental Science & Health, 2020, 13:35-45.
    [6]
    WU H, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment:design and operation[J]. Bioresource Technology, 2015, 175:594-601.
    doi: 10.1016/j.biortech.2014.10.068
    [7]
    罗元, 谢坤, 冯弋洋, 等. 镧改性核桃壳生物炭制备及吸附水体磷酸盐性能[J]. 化工进展, 2021, 40(2):1121-1129.

    LUO Y, XIE K, FENG Y Y, et al. Preparation of lanthanum modified walnut shell biochar and adsorption of phosphate from aqueous solutions[J]. Chemical Industry and Engineering Progress, 2021, 40(2):1121-1129.
    [8]
    CHAZARENC F, BRISSON J, COMEAU Y. Slag columns for upgrading phosphorus removal from constructed wetland effluents[J]. Water Science and Technology, 2007, 56:109-115.
    [9]
    PENG J, SONG Y, LIU Z, et al. Performance of a novel circular-flow corridor wetland toward the treatment of simulated high-strength swine wastewater[J]. Ecological Engineering, 2012, 49:1-9.
    doi: 10.1016/j.ecoleng.2012.08.005
    [10]
    冀泽华, 冯冲凌, 吴晓芙, 等. 人工湿地污水处理系统填料及其净化机理研究进展[J]. 生态学杂志, 2016, 8(35):2234-2243.

    JI Z H, FENG C L, WU X F, et al. Research progress on filler application and purification mechanisms in constructed wetland wastewate treatment system[J]. Chinese Journal of Ecology, 2016, 8(35):2234-2243.
    [11]
    ZHENG X, DOU J, YUAN J, et al. Removal of Cs+from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite[J]. Journal of Environmental Sciences, 2017, 56(1):12-24.
    doi: 10.1016/j.jes.2016.08.019
    [12]
    ZHANG L, ZHANG L, LIU Y, et al. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater[J]. Desalination, 2010, 250(3):915-920.
    doi: 10.1016/j.desal.2008.04.062
    [13]
    ULYETT J, SAKRABANI R, KIBBLEWHITE M, et al. Impact of biochar addition on water retention,nitrification and carbon dioxide evolution from two sandy loam soils[J]. European Journal of Soil Science, 2014, 65(1):96-104.
    doi: 10.1111/ejss.12081
    [14]
    CAO W, WANG Y, SUN L, et al. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions[J]. Ecological Engineering, 2016, 88:77-81.
    doi: 10.1016/j.ecoleng.2015.12.019
    [15]
    ZHOU X, LIANG C, JIA L, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment:impact of influent strengths[J]. Bioresource Technology, 2018, 247:844-850.
    doi: 10.1016/j.biortech.2017.09.044
    [16]
    LI R, MORRISON L, COLLINS G, et al. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction[J]. Water Research, 2016, 96:32-41.
    doi: 10.1016/j.watres.2016.03.034
    [17]
    TONG S, RODRIGUEZ-GONZALEZ L, FENG C, et al. Comparison of particulate pyrite autotrophic denitrification(PPAD)and sulfur oxidizing denitrification(SOD)for treatment of nitrified wastewater[J]. Water Science and Technology, 2016, 75(1):239-246.
    doi: 10.2166/wst.2016.502
    [18]
    YANG Y, CHEN T, MUKHERJEE S, et al. Utilization of iron sulfides for wastewater treatment:a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2):289-308.
    doi: 10.1007/s11157-017-9432-3
    [19]
    BEZBARUAH A. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal[J]. Environmental Science & Technology, 2003, 37:1690-1697.
    doi: 10.1021/es020912w
    [20]
    CHYAN J, SENORO D, LIN C, et al. A novel biofilm carrier for pollutant removal in a constructed wetland based on waste rubber tire chips[J]. International Biodeterioration & Biodegradation, 2013, 85:638-645.
    [21]
    张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3):49-52.

    ZHANG X W, LI F M, LU L, et al. The comparison of 10 constructed wetland substrate media for P adsorption[J]. Technology of Water Treatment, 2014, 40(3):49-52.
    [22]
    ZHAO Y Q, BABATUNDE A O, ZHAO X H, et al. Development of alum sludge-based constructed wetland:an innovative and cost effective system for wastewater treatment[J]. Journal of Environmental Science & Health,Part A:Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(8):827-832.
    [23]
    BUDDHAWONG S, KUSCHK P, MATTUSCH J, et al. Removal of arsenic and zinc using different laboratory model wetland systems[J]. Engineering in Life Sciences, 2005, 5(3):247-252.
    doi: 10.1002/(ISSN)1618-2863
    [24]
    YADAV A K, KUMAR N, SREEKRISHNAN T R, et al. Removal of chromium and nickel from aqueous solution in constructed wetland:mass balance,adsorption-desorption and FTIR study[J]. Chemical Engineering Journal, 2010, 160(1):122-128.
    doi: 10.1016/j.cej.2010.03.019
    [25]
    GREENWAY M. Media for enhanced phosphorus removal from secondary wastewater effluent[C]. World Environmental and Water Resources Congress, 2016.
    [26]
    卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8):1187-1194.

    LU S Y, WAN Z F, LI F M, et al. The comparison of 29 constructed wetland substrate media for N H 4 + -N adsorption [J]. Research of Environmental Sciences, 2016, 29(8):1187-1194.
    [27]
    MANDER Ü, TEITER S, KUUSEMETS V, et al. Nitrogen and phosphorus budgets in a subsurface flow wastewater treatment wetland[J]. Water, 2003, 61:135-148.
    [28]
    ALLENDE K L, FLETCHER T D, SUN G. The effect of substrate media on the removal of arsenic,boron and iron from an acidic wastewater in planted column reactors[J]. Chemical Engineering Journal, 2012, 179:119-130.
    doi: 10.1016/j.cej.2011.10.069
    [29]
    LI L, ZHANG H, WANG D. Influencing factors of limestone sorption and its usage in advanced wastewater treatment for phosphorus removal[J]. International Journal of Nanoscience, 2012, 11:40028.
    [30]
    BELLIER N, CHAZARENC F, COMEAU Y. Phosphorus removal from wastewater by mineral apatite[J]. Water Research, 2006, 40(15):2965-2971.
    doi: 10.1016/j.watres.2006.05.016
    [31]
    DAI H, HU F. Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems:a comparative study[J]. Polish Journal of Environmental Studies, 2017, 26(3):1003-1010.
    doi: 10.15244/pjoes/66708
    [32]
    KÕIV M, VOHLA C, MÕTLEP R, et al. The performance of peat-filled subsurface flow filters treating landfill leachate and municipal wastewater[J]. Ecological Engineering, 2009, 35(2):204-212.
    doi: 10.1016/j.ecoleng.2008.04.006
    [33]
    GRÜNEBERG B, KERN J. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands[J]. Water Science and Technology, 2001, 44:69-75.
    [34]
    PAUL A, ANDERSON B. Phosphorus removal by blast furnace slag and cement clinker-flow cell studies for estimation of sorptive capacity for use with constructed treatment wetlands[J]. Water Quality Research Journal of Canada, 2011, 46:300.
    [35]
    BLANCO I, MOLLE P, SAENZ D M L E, et al. Basic oxygen furnace steel slag aggregates for phosphorus treatment:evaluation of its potential use as a substrate in constructed wetlands[J]. Water Research, 2016, 89(1):355-365.
    doi: 10.1016/j.watres.2015.11.064
    [36]
    JOHANSSON WESTHOLM L, HYLANDER L. Phosphorus removal from wastewater by filter media:retention and estimated plant availability of sorbed phosphorus[J]. Journal of the Polish Academy of Science, 1998, 458:397-409.
    [37]
    WENDLING L A, DOUGLAS G B, COLEMAN S, et al. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products[J]. Science of the Total Environment, 2013, 442:63-72.
    doi: 10.1016/j.scitotenv.2012.10.008
    [38]
    丁超峰, 陈建平, 盛彦清, 等. 复合赤泥在高浓度含磷废水处理中的应用[J]. 环境工程学报, 2013, 7(12):4643-4647.

    DING C F, CHEN J P, SHENG Y Q, et al. Application of composite red mud in treatment of high phosphate-containing wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(12):4643-4647.
    [39]
    LI Y, LIU C, LUAN Z, et al. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash[J]. Journal of Hazardous Materials, 2006, 137(1):374-383.
    doi: 10.1016/j.jhazmat.2006.02.011
    [40]
    CHEN Y P, CHENG J, NIU S P, et al. Evaluation of the different filter media in vertical flow stormwater wetland[J]. Desalination & Water Treatment, 2013, 19/20/21:4097-4106.
    [41]
    赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3):987-994.

    ZHAO W L, HAO R X, LI B, et al. Effects of pretreatment methods on corncob as carbon source for denitrification[J]. Environmental Science, 2014, 35(3):987-994.
    [42]
    赵民. 基于农业废弃物的人工湿地稳释型固体碳源的制备及释碳性能研究[D]. 青岛:青岛大学, 2019.
    [43]
    WANG Z, DONG J, LIU L, et al. Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater[J]. Ecological Engineering, 2013, 54:57-65.
    doi: 10.1016/j.ecoleng.2013.01.017
    [44]
    李文鹏. 改性牡蛎壳除磷吸附剂制备及其除磷性能研究[D]. 大连:大连理工大学, 2014.
    [45]
    PARK W H, POLPRASERT C. Roles of oyster shells in an integrated constructed wetland system designed for P removal[J]. Ecological Engineering, 2008, 34(1):50-56.
    doi: 10.1016/j.ecoleng.2008.05.014
    [46]
    万正芬. 城镇污水处理厂出水中氮磷高效吸附填料的筛选[D]. 青岛:中国海洋大学, 2015.
    [47]
    YAHYA S, MUSA I, AMJAD H, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes and Pigments, 2008, 77(1):16-23.
    doi: 10.1016/j.dyepig.2007.03.001
    [48]
    DENG C, HUANG L, LIANG Y, et al. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands:microbial community structure and metabolite characteristics[J]. Science of the Total Environment, 2019, 694:133687.
    doi: 10.1016/j.scitotenv.2019.133687
    [49]
    ABEDI T, MOJIRI A. Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment[J]. Environmental Technology & Innovation, 2019, 16:100472.
    [50]
    钟乐. 生物炭联合电化学强化人工湿地脱氮除磷的效能及机制研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
    [51]
    李妍. 自来水厂污泥陶粒化作为人工湿地填料的研究[D]. 福州:福建师范大学, 2015.
    [52]
    孟盼盼. 陶粒基人工湿地处理生活污水及新型陶粒的开发研究[D]. 济南:山东大学, 2015.
    [53]
    吴鹏, 陆爽君, 徐乐中, 等. 改性沸石湿地脱氮除磷效能及机制[J]. 环境科学, 2017, 38(2):580-588.

    WU P, LU S J, XU L Z, et al. Efficiency and mechanism of nitrogen and phosphorus removal in modified zeolite wetland[J]. Environmental Sciences, 2017, 38(2):580-588.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(459) PDF Downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return