Volume 11 Issue 3
May  2021
Turn off MathJax
Article Contents
HAN Guimei, ZHOU Changbo, FANG Gang, ZHAO Chuanming, DANG Chunge, LI Zixiu, GUO Yajing, LIN Yuchen. Application status and prospects of solid waste disposal and resource utilization technology in natural gas extraction drilling[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 582-590. doi: 10.12153/j.issn.1674-991X.20200161
Citation: HAN Guimei, ZHOU Changbo, FANG Gang, ZHAO Chuanming, DANG Chunge, LI Zixiu, GUO Yajing, LIN Yuchen. Application status and prospects of solid waste disposal and resource utilization technology in natural gas extraction drilling[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 582-590. doi: 10.12153/j.issn.1674-991X.20200161

Application status and prospects of solid waste disposal and resource utilization technology in natural gas extraction drilling

doi: 10.12153/j.issn.1674-991X.20200161
More Information
  • Corresponding author: ZHOU Changbo E-mail: zhoucb@craes.org.cn
  • Received Date: 2020-06-30
  • Publish Date: 2021-05-20
  • The natural gas drilling process generates massive drilling solid waste that contains petroleum hydrocarbon, inorganic salt and refractory organic compounds, etc., which are either poisonous or harmful species. The pH of the water-based drilling solid waste is generally 9-10, which exceeds the technical requirement of Category Ⅰ field storage and backfill of general industrial solid waste stipulated by Standard for Pollution Control on the Storage and Disposal for General Industrial Solid Wastes (GB 18599-2001). The petroleum hydrocarbon content is 4 690-15 500 mg/kg, exceeding the requirements of soil pollution risk screening value of Class Ⅱ land of Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land(Trial) (GB 36600-2018). The use of oil-based drilling fluid in some gas fields in Sichuan, Chongqing, Xinjiang, etc., due to the complexity of terrain, may lead to over standard concentrations of heavy metals, polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons. The drilling solid waste is mainly composed of SiO2, CaO, Al2O3, with the total content of three components can reach 72%, which contains the necessary chemical compositions for the preparation of building materials. Based on the pollution characteristics and chemical components of drilling solid waste, the solid waste disposal technologies (including curing stabilization, biodegradation, chemical leaching, downhole reinjection, source reduction technology, etc.) were systematically summarized and analyzed both at home and aboard. Further discussion was made on the characteristics and treatment effect of the technologies, as well as the research progress of resource utilization such as brick-making, wellsite roadway paving, modifier, etc. It was proposed that various treatment and disposal technologies can effectively reduce the pollutants in the drilling solid waste, and diversified resource utilization approaches can improve the utilization rate of solid waste, which tends to be prospective. It was suggested that separate treatment should performed for the drilling solid waste at the source, and multiple treatment technologies should be carried out in the process. At the end of pipe, the technologies of subgrade soil resource utilization should be explored to consume the drilling solid waste to the maximum extent, combined with the demand of gas field development area.

     

  • loading
  • [1]
    杨德敏, 袁建梅, 程方平, 等. 油气开采钻井固体废物处理与利用研究现状[J]. 化工环保, 2019, 39(2):129-136.

    YANG D M, YUAN J M, CHENG F P, et al. Current situation of treatment and utilization of drilling solid waste in oil and gas exploitation[J]. Environmental Protection of Chemical Industry, 2019, 39(2):129-136.
    [2]
    国务院. 国务院办公厅关于印发能源发展战略行动计划(2014—2020年)的通知:国办发〔2014〕31号[A/OL].(2014-11-19)[2020-06-10]. http://www.gov.cn/zhengce/content/2014-11/19/content_9222.htm.
    [3]
    沈晓莉, 杨金忠, 徐天有, 等. 典型地区油气田水基钻井岩屑污染特征研究[J]. 环境污染与防治, 2017, 39(5):480-483.

    SHEN X L, YANG J Z, XU T Y, et al. Research onpollution characteristic of water-based drilling cuttings of typical oil-gas fields[J]. Environmental Pollution & Control, 2017, 39(5):480-483.
    [4]
    王蓉沙, 邓皓, 谢水祥, 等. 油气田废弃钻井液对生态环境的影响评价研究[J]. 石油天然气学报, 2009, 31(2):152-156.

    WANG R S, DENG H, XIE S X, et al. The influence of abandoned drilling fluid in oil-gas field on ecological environment[J]. Journal of Oil and Gas Technology, 2009, 31(2):152-156.
    [5]
    吴明霞. 废弃水基钻井液环境影响及固化处理技术研究[D]. 大庆: 东北石油大学, 2012.
    [6]
    罗伟. 钻井废弃泥浆固化路基材料性能研究[D]. 成都: 西南石油大学, 2015.
    [7]
    童刚强. 川东北地区钻井固废的处置研究[D]. 成都: 西南交通大学, 2014.
    [8]
    国务院. 国务院办公厅关于印发“无废城市”建设试点工作方案的通知:国办发〔2018〕128号[A/OL].(2019-01-20)[2020-06-10]. http://www.gov.cn/zhengce/content/2019-01/21/content_5359620.htm.
    [9]
    天然气开采水基钻井固体废物资源化利用一体化技术研究报告[R].北京:中国环境科学研究院, 2019.
    [10]
    杨莉, 杨有海, 刘永河. 固体废物的固化/稳定化技术研究进展[J]. 河西学院学报, 2015, 31(5):37-41.

    YANG L, YANG Y H, LIU Y H. Research advancement in solidification/stabilization technology of solid waste[J]. Journal of Hexi University, 2015, 31(5):37-41.
    [11]
    FILIPPOV L, THOMAS F, FILIPPOVA I, et al. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases [J]. Journal of Hazardous Materials, 2009, 171(1/2/3):731-738.
    doi: 10.1016/j.jhazmat.2009.06.065
    [12]
    张晓龙, 贺少武, 杨文涛, 等. 钻井废弃泥浆减量化和无害化处理标准分析[J]. 中国石油和化工标准与质量, 2017, 37(19):5-6.

    ZHANG X L, HE S W, YANG W T, et al. Analysis of the standards for reduction and harmless treatment of drilling waste mud[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(19):5-6.
    [13]
    刘俊, 张俊. 气田钻井废弃泥浆固化技术[J]. 环境工程, 2009, 27(2):91-93.

    LIU J, ZHANG J. Solidification technology of gas field’s waste drilling fluid[J]. Environmental Engineering, 2009, 27(2):91-93.
    [14]
    李维斌, 张阳. 大牛地气田钻井液不落地技术与实践[J]. 重庆科技学院学报(自然科学版), 2016, 18(1):57-59.

    LI W B, ZHANG Y. Technology and practice of without landing drilling fluid indaniudi gas field[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2016, 18(1):57-59.
    [15]
    张现斌, 邱正松, 陶瑞东, 等. 钻井废弃物高强度固化处理新技术[J]. 中国石油大学学报(自然科学版), 2011, 35(2):172-177.

    ZHANG X B, QIU Z S, TAO R D, et al. Novel technology of high strength stabilization/solidification of drilling waste[J]. Journalof China University of Petroleum(Edition of Natural Science), 2011, 35(2):172-177.
    [16]
    SANDERSON P, NAIDU R, BOLAN N, et al. Critical review on chemical stabilization of metal contaminants in shooting range soils[J]. Journal of Hazardous,Toxic,and Radioactive Waste, 2012, 16(3):258-272.
    doi: 10.1061/(ASCE)HZ.2153-5515.0000113
    [17]
    KOGBARA R B, DUMKHANA B B, AYOTAMUNO J M, et al. Recycling stabilised/solidified drill cuttings for forage production in acidic soils[J]. Chemosphere, 2017, 184:652-663.
    doi: 10.1016/j.chemosphere.2017.06.042
    [18]
    杨金荣, 张鑫. 厄瓜多尔Tarapoa地区钻井废弃物综合处理新技术[J]. 中国安全生产科学技术, 2017, 13(增刊1):140-143.

    YANG J R, ZHANG X. Drilling waste integrated management technology in Tarapoa block in Ecuador[J]. Journal of Safety Science and Technology, 2017, 13(Suppl 1):140-143.
    [19]
    MA Y, LIU Z H, XU Y Q, et al. Remediating potentially toxic metal and organic co-contamination of soil by combining in situ solidification/stabilization and chemical oxidation:efficacy,mechanism,and evaluation [J]. International Journal of Environmental Research and Public Health, 2018, 15(11):2595.
    doi: 10.3390/ijerph15112595
    [20]
    HEDAYATIPOUR M, JAAFARZADEH N, AHMADMOAZZAM M. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration[J]. Journal of Environmental Management, 2017, 203:151-156.
    doi: 10.1016/j.jenvman.2017.07.070
    [21]
    SERRANO S, VLASSOPOULOS D, BESSINGER B, et al. Immobilization of Hg(Ⅱ) by coprecipitation in sulfate-cement systems[J]. Environmental Science & Technology, 2012, 46(12):6767-6775.
    doi: 10.1021/es202939v
    [22]
    KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr,Cu,Pb and Zn in soil using amendments:a review[J]. Waste Management, 2008, 28(1):215-225.
    doi: 10.1016/j.wasman.2006.12.012
    [23]
    IRYNA A, LEONID P. The immobilization of heavy metals during drilling sludge utilization[J]. Environmental Technology & Innovation, 2016, 6:123-131.
    [24]
    李世刚, 吴明霞, 王宝辉, 等. 废弃油基钻井液处理技术研究进展[J]. 化学工业与工程技术, 2012, 33(5):33-37.

    LI S G, WU M X, WANG B H, et al. Research progresson treating technology of waste oil-based drilling fluid[J]. Journal of Chemical Industry & Engineering, 2012, 33(5):33-37.
    [25]
    陈立荣, 李盛林, 张敏, 等. 钻井固废生物处理技术[J]. 油气田环境保护, 2018, 28(1):25-27.

    CHEN L R, LI S L, ZHANG M, et al. Microbial technology for drilling solid waste treatment[J]. Environmental Protection of Oil & Gas Fields, 2018, 28(1):25-27.
    [26]
    CHEN L R, HUANG M, JIANG X B, et al. Pilot tests of microbe-soil combined treatment of waste drilling sludge[J]. Natural Gas Industry B, 2015, 2(2/3):270-276.
    doi: 10.1016/j.ngib.2015.07.021
    [27]
    周昊, 郭娇娇, 何绪文, 等. 煤矿区固废改良土壤对植物生长的影响[J]. 煤炭技术, 2018, 37(3):23-25.
    doi: 10.1016/0257-8972(89)90118-7

    ZHOU H, GUO J J, HE X W, et al. Research on impact of coal solid waste improved soil on plant growth[J]. Coal Technology, 2018, 37(3):23-25. doi: 10.1016/0257-8972(89)90118-7
    [28]
    陈政阳, 刘国, 唐彬彬, 等. 油基泥浆钻井岩屑中高效石油降解菌的筛选及其降解特性[J]. 环境工程, 2018, 36(2):48-53.

    CHEN Z Y, LIU G, TANG B B, et al. Isolation of degrading bacteria from oil base mud drilling cuttings and its degrading characteristics[J]. Environmental Engineering, 2018, 36(2):48-53.
    [29]
    万书宇, 余思源, 何天鹏, 等. 微生物处理水基钻井固废技术应用[J]. 油气田环境保护, 2019, 29(2):33-36.

    WAN S Y, YU S Y, HE T P, et al. Application of microbial treatment on water-based drilling waste[J]. Environmental Protection of Oil & Gas Fields, 2019, 29(2):33-36.
    [30]
    伍秀群, 胡宗元, 张虎成, 等. 工业污染场地土壤修复技术研究[J]. 中国高新技术企业, 2017(3):88-89.

    WU X Q, HU Z Y, ZHANG H C, et al. Study on soil remediation technology of industrial pollution site[J]. China High-Tech Enterprises, 2017(3):88-89.
    [31]
    孙涛, 陆扣萍, 王海龙. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 2015, 32(1):140-149.

    SUN T, LU K P, WANG H L. Advance in washing technology for remediation of heavy metal contaminated soils:effects of eluants and washing conditions[J]. Journal of Zhejiang A&F University, 2015, 32(1):140-149.
    [32]
    陈银合. 化学淋洗和固化/稳定化技术修复重金属污染土壤[J]. 安徽农业科学, 2016, 44(1):156-158.

    CHEN Y H. Remediation of heavy metal contaminated soil by combinedtechnology of chemical washing and solidification/stabilization[J]. Journal of Anhui Agricultural Sciences, 2016, 44(1):156-158.
    [33]
    许德刚, 李巨峰, 张坤峰, 等. 石油污染土壤修复技术研究进展[J]. 安全、健康和环境, 2014, 14(3):29-32.

    XU D G, LI J F, ZHANG K F, et al. Research progress in remediation technology for soil contaminated by petroleum[J]. Safety Health & Environment, 2014, 14(3):29-32.
    [34]
    李晓光, 马建立, 马云鹏, 等. 污染场地修复技术效能比较[J]. 中国环保产业, 2014(10):49-52.

    LI X G, MA J L, MA Y P, et al. Efficiency comparison on remediation technologies in polluted sites[J]. China Environmental Protection Industry, 2014(10):49-52.
    [35]
    SANTOS N B C, FAGUNDES F M, de OLIVEIRA A F, et al. Sedimentation of solids in drilling fluids used in oil well drilling operations[J]. Journal of Petroleum Science and Engineering, 2018, 162:137-142.
    doi: 10.1016/j.petrol.2017.12.026
    [36]
    FENG D, LORENZEN L, ALDRICH C, et al. Ex situ diesel contaminated soil washing with mechanical methods [J]. Minerals Engineering, 2001, 14(9):1093-1100.
    doi: 10.1016/S0892-6875(01)00114-5
    [37]
    全向春, 李安婕. 突发性场地污染事故处理处置方法及技术体系[M]. 北京: 科学出版社, 2013.
    [38]
    徐磊. 某化工厂污染场地风险评估与修复研究[D]. 成都: 成都理工大学, 2015.
    [39]
    CONNER J R, HOEFFNER S L. A critical review of stabilization/solidification technology[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4):397-462.
    doi: 10.1080/10643389891254250
    [40]
    苏勤, 何青水, 张辉, 等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术, 2010, 38(5):106-110.

    SU Q, HE Q S, ZHANG H, et al. Foreign onshore drilling waste treatment technology[J]. Petroleum Drilling Techniques, 2010, 38(5):106-110.
    [41]
    ORESHKIN D V, CHEBOTAEV A N, PERFILOV V A. Disposal of drilling sludge in the production of building materials[J]. Procedia Engineering, 2015, 111:607-611.
    doi: 10.1016/j.proeng.2015.07.053
    [42]
    檀大冰. 塔里木油田钻井清洁生产技术探讨[J]. 化工设计通讯, 2017, 43(12):221.

    TAN D B. Discussion on drilling clean production technology in Tarimoil field[J]. Chemical Engineering Design Communications, 2017, 43(12):221.
    [43]
    HOU Y F, QI S D, YOU H P, et al. The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating[J]. Journal of Environmental Management, 2018, 228:312-318.
    doi: 10.1016/j.jenvman.2018.09.040
    [44]
    ANGHELESCU L, CRUCERU M, DIACONU B. Building materials obtained by recycling coal ash and waste drilling fluid and characterization of engineering properties by means of Artificial Neural Networks[J]. Construction and Building Materials, 2019, 227:116616.
    doi: 10.1016/j.conbuildmat.2019.07.342
    [45]
    WANG C Q, LIN X Y, MEI X D, et al. Performance of non-fired bricks containing oil-based drilling cuttings pyrolysis residues of shale gas[J]. Journal of Cleaner Production, 2019, 206:282-296.
    doi: 10.1016/j.jclepro.2018.09.128
    [46]
    郭海霞, 陈文烯. 固体钻井废弃物资源化利用技术现状[J]. 绿色环保建材, 2017(8):13-15.
    [47]
    WANG C Q, LIN X Y, WANG D, et al. Utilization of oil-based drilling cuttings pyrolysis residues of shale gas for the preparation of non-autoclaved aerated concrete[J]. Construction and Building Materials, 2018, 162:359-368.
    doi: 10.1016/j.conbuildmat.2017.11.151
    [48]
    LIU D S, WANG C Q, MEI X D, et al. Environmental performance,mechanical and microstructure analysis of non-fired bricks containing water-based drilling cuttings of shale gas[J]. Construction and Building Materials, 2018, 183:215-225.
    doi: 10.1016/j.conbuildmat.2018.06.107
    [49]
    PISZCZ-KARAŚK, KLEIN M, HUPKA J, et al. Utilization of shale cuttings in production of lightweight aggregates[J]. Journal of Environmental Management, 2019, 231:232-240.
    doi: 10.1016/j.jenvman.2018.09.101
    [50]
    中国石油. 钻井废弃物资源化利用在川试点有望推广西南西区油气田[EB/OL].( 2016-06-28)[ 2020-06-10]. http://www.cnpc.com.cn/cnpc/mtjj/201606/3d5a9da2e6a44ea28e0b905147f116af.shtml.
    [51]
    岳云龙, 杨中喜, 陶文宏, 等. 利用乐安油田污泥固化生产生态建材的研究[J]. 济南大学学报(自然科学版), 2002, 16(1):63-65.

    YUE Y D, YANG Z X, TAO W H, et al. On producing ecological building materials by solidifying the mud in Anle Oil Field[J]. Journal of University of Jinan(Science and Technology), 2002, 16(1):63-65.
    [52]
    冀忠伦. 废弃钻井液作为沙漠改良剂的应用研究[J]. 环境工程, 2010, 28(6):21-23.

    JI Z L. Study on using waste drilling fluid as improver of desert soil[J]. Environmental Engineering, 2010, 28(6):21-23.
    [53]
    ZHANG A, LI M, LÜ P, et al. Disposal and reuse of drilling solid waste from a massive gas field[J]. Procedia Environmental Sciences, 2016, 31:577-581.
    doi: 10.1016/j.proenv.2016.02.089
    [54]
    邸鲲, 张磊, 陈晨, 等. 达标处理钻井废弃物对植物生长的影响[J]. 油气田环境保护, 2014, 24(1):41-44.

    DI K, ZHANG L, CHEN C, et al. The impacts of standard treated drilling mud waste onplants growing[J]. Environmental Protection of Oil & Gas Fields, 2014, 24(1):41-44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(465) PDF Downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return