Volume 11 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
SUN Zhongping, WU Naijin, YANG Sucai, WEI Wenxia, SONG Yun. Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwater[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 298-306. doi: 10.12153/j.issn.1674-991X.20200150
Citation: SUN Zhongping, WU Naijin, YANG Sucai, WEI Wenxia, SONG Yun. Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwater[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 298-306. doi: 10.12153/j.issn.1674-991X.20200150

Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwater

doi: 10.12153/j.issn.1674-991X.20200150
More Information
  • Corresponding author: SONG Yun E-mail: liepi_song@163.com
  • Received Date: 2020-06-12
  • Publish Date: 2021-03-20
  • Volatile chlorinated hydrocarbons such as trichloroethylene have become one of the most highly detected organic pollutants in groundwater of China. In order to enrich the theoretical support of bioremediation of groundwater polluted by chlorinated hydrocarbons in China, the aquifer sediments and groundwater samples were collected from a chlorinated hydrocarbons contaminated site in Beijing. The effects of different concentrations of sodium acetate, sodium lactate and lactic acid on the removal of trichloroethylene under anaerobic conditions were preliminarily investigated by the microcosm experiments. Combined with the analysis of the intermediate products and the change of microbial diversity in each anaerobic system, the reaction mechanism was elaborated. The results showed that under the anaerobic condition, the removal rate of trichloroethylene in the system of 1.0 g/L sodium acetate was the highest, and the degradation rate was 94.5%. The test system with sodium acetate could maintain neutral pH and low redox potential for a long time, and at the same time, it could achieve the highest TOC degradation rate. Only cis-1,2-dichloroethylene was detected in the intermediates of anaerobic degradation on the 30th day of the reaction. It was inferred that the main mechanism of biodegradation of trichloroethylene under the anaerobic condition was hydrogenolysis. In the microcosm system, the dominant microbes at the phylum level contained Proteobacteriae and Firmicutes, which were potential high-efficiency biodegradable bacteria for chlorinated hydrocarbons. The qPCR results showed that the total amount of bacteria increased greatly in each reaction system, and a high level of tceA was detected in each sample (about 106-107copies/L), suggesting that the hydrogenolysis of TCE might be carried out under the function of tceA.

     

  • loading
  • [1]
    FRASCARI D, ZANAROLI G, DANKO A S. In situ aerobic cometabolism of chlorinated solvents:a review[J]. Journal of Hazardous Materials, 2015,283:382-399.
    [2]
    何江涛, 李烨, 刘石, 等. 浅层地下水氯代烃污染的天然生物降解[J]. 环境科学, 2005,26(2):121-125.

    HE J T, LI Y, LIU S, et al. Chlorinate solvents natural biodegradation in shallow groundwater[J]. Environmental Science, 2005,26(2):121-125.
    [3]
    郑西来, 唐凤琳, 辛佳, 等. 污染地下水零价铁原位反应带修复技术:理论·应用·展望[J]. 环境科学研究, 2016,29(2):155-163.

    ZHENG X L, TANG F L, XIN J, et al. Development of a zero-valent iron-based in-situ reactive zones technique for remediation of contaminated groundwater[J]. Research of Environmental Sciences, 2016,29(2):155-163.
    [4]
    HE J Z, RITALAHTI K M, YANG K L, et al. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium[J]. Nature, 2003,424(6944):62-65.
    [5]
    CERNOK A, MARQUARDT K, BYKOVA E, et al. Compression of α-cristobalite under different hydrostatic conditions[J]. Water Research, 2005,39(15):3579-3586.
    [6]
    FUTAGAMI T, GOTO M, FURUKAWA K. Biochemical and genetic bases of dehalorespiration[J]. Chemical Record, 2010,8(1):1-12.
    [7]
    GERRITSE J, DRZYZGA O, KLOETSTRA G, et al. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1[J]. Applied and Environmental Microbiology, 1999,65(12):5212-5221.
    [8]
    MILLER E, WOHLFARTH G, DIEKERT G. Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp.strain PCE-S[J]. Archives of Microbiology, 1997,168(6):513-519.
    [9]
    LUIJTEN M L G C, DE W J, SMIDT H, et al. Description of Sulfurospirillum halorespirans sp. nov. an anaerobic,tetrachloroethene-respiring bacterium,and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2003,53(Pt 3):787.
    [10]
    MÜLLER J A, ROSNER B M, VON A G, et al. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp.strain VS and its environmental distribution[J]. Applied and Environmental Microbiology, 2004,70(8):4880-4888.
    [11]
    CHENG D, HE J Z. Isolation and characterization of “Dehalococcoides” sp. strain MB,which dechlorinates tetrachloroethene to trans-1,2-dichloroethene[J]. Applied and Environmental Microbiology, 2009,75(18):5910-5918.
    [12]
    SUNG Y, RITALAHTI K M, APKARIAN R P, et al. Quantitative PCR confirms purity of strain GT,a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate[J]. Applied and Environmental Microbiology, 2006,72(3):1980-1987.
    [13]
    MCCARTY P L, CHU M Y, KITANIDIS P K. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater[J]. European Journal of Soil Biology, 2007,43(5):276-282.
    [14]
    HOOD E D, MAJOR D W, QUINN J W, et al. Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34,Cape Canaveral Air Force Station[J]. Ground Water Monitoring and Remediation, 2008,28(2):98-107.
    [15]
    程莉蓉, 刘奕慧, 丁爱中, 等. 地下水三氯乙烯原位生物修复及其影响因素综述[J]. 安全与环境学报, 2012,12(4):90-97.

    CHENG L R, LIU Y H, DING A Z, et al. Influencing factors of in-situ bioremediation of TCE-contaminated groundwater[J]. Journal of Safety and Environment, 2012,12(4):90-97.
    [16]
    PANT P, PANT S. A review:advances in microbial remediation of trichloroethylene(TCE)[J]. Journal of Environmental Sciences, 2010,22(1):116-126.
    [17]
    张凤君, 王斯佳, 马慧, 等. 三氯乙烯和四氯乙烯在土壤和地下水中的污染及修复技术[J]. 科技导报, 2012(18):67-74.

    ZHANG F J, WANG S J, MA H, et al. Contaminations and remediation technologies of trichloroethylene and perchloroethylene in the soil and groundwater: a review[J]. Science & Technology Review, 2012(18):67-74.
    [18]
    郭莹. 硫酸盐还原条件下三氯乙烯的降解研究[D]. 合肥:合肥工业大学, 2014.
    [19]
    AZIZIAN M F, MARSHALL I P, BEHRENS S, et al. Comparison of lactate,formate,and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column[J]. Journal of Contaminant Hydrology, 2010,113(1):77-92.
    [20]
    孙仲平, 吴乃瑾, 魏文侠, 等. 电子供体刺激下厌氧微生物对1,2-二氯乙烷的降解效果[J]. 环境科学研究, 2018,31(8):1431-1438.

    SUN Z P, WU N J, WEI W X, et al. Study on the effect of anaerobic microbial degradation of 1,2-dichloroethane stimulated by electron donor[J]. Research of Evironmental Sciences, 2018,31(8):1431-1438.
    [21]
    陈梦舫, 骆永明, 宋静, 等. 场地含水层氯代烃污染物自然衰减机制与纳米铁修复技术的研究进展[J]. 环境监测管理与技术, 2011,23(3):85-89.

    CHEN M F, LUO Y M, SONG J, et al. Natural attenuation mechanisms and the status of nano-iron technology for the remediation of chlorinated solvents in groundwater[J]. The Administration and Technique of Environmental Monitoring, 2011,23(3):85-89.
    [22]
    郭莹, 崔康平. 硫酸盐还原对三氯乙烯生物降解的影响[J]. 环境工程学报, 2014,8(10):4159-4162.

    GUO Y, CUI K P. Effect of sulfate reduction on biodegradation of trichloroethylene[J]. Chinese Journal of Environmental Engineering, 2014,8(10):4159-4162.
    [23]
    YIH-TERNG S, TSANG D C W, DONG C D, et al. Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate[J]. Journal of Cleaner Production, 2018,178:108-118.
    [24]
    BOUWER E J, NORRIS R D, HINCHEE R E, et al. Bioremediation of chlorinated solvents using alternate electron acceptors[M]// Handbook of Bioremediation, 1994.
    [25]
    DONG S S, FENG C P, CUI W H, et al. Anaerobic bioremediation performance and indigenous microbial communities in treatment of trichloroethylene/nitrate-contaminated groundwater[J]. Environmental Engineering Science, 2018,35(4):311-322.
    [26]
    HAI P, BOON N, MARZORATI M, et al. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia[J]. Water Research, 2009,43(11):2936-2946.
    [27]
    GROSTERN A, EDWARDS E A. Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene[J]. Applied and Environmental Microbiology, 2009,75(9):2684-2693.
    [28]
    GERRITSE J, RENARD V, PEDRO G, et al. Desulfitobacterium sp. strain PCE1,an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols[J]. Archives of Microbiology, 1996,165(2):132.
    [29]
    KRUMHOLZ L R. Desulfuromonas chloroethenica sp. nov. uses Tetrachloroethylene and Trichloroethylene as electron acceptors[J]. International Journal of Systematic Bacteriology, 1997,47(4):1262-1263.
    [30]
    HE J, SUNG Y, KRAJMALNIKBROWN R, et al. Isolation and characterization of Dehalococcoides sp. strain FL2,a trichloroethene(TCE)-and 1,2-dichloroethene-respiring anaerobe[J]. Environmental Microbiology, 2010,7(9):1442-1450.
    [31]
    MAYMÓGATELL X, CHIEN Y, GOSSETT J M, et al. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene[J]. Science, 1997,276(5318):1568-1571.
    pmid: 9171062
    [32]
    SIMANKOVA M V, KOTSYURBENKO O R, LUEDERS T, et al. Isolation and characterization of new strains of methanogens from cold terrestrial habitats[J]. Systematic and Applied Microbiology, 2003,26(2):312-318.
    [33]
    李姜维, 杨晓永, 胡安谊, 等. 苯甲酸盐厌氧驯化体系中三氯乙烯的还原脱氯特性[J]. 环境科学, 2015,36(10):216-223.

    LI J W, YONG X Y, HU A Y, et al. Reductive dechlorination of trichloroethylene by benzoate-enriched anaerobic cultures[J]. Environmental Science, 2015,36(10):216-223.
    [34]
    YAN J, RASH B A, RAINEY F A, et al. Detection and quantification of Dehalogenimonas and “Dehalococcoides” populations via PCR-based protocols targeting 16S rRNA genes[J]. Applied and Environmental Microbiology, 2009,75(23):7560.
    doi: 10.1128/AEM.01938-09 pmid: 19820163
    [35]
    DUHAMEL M, MO K, EDWARDS E A. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene[J]. Applied and Environmental Microbiology, 2004,70(9):5538.
    [36]
    ZHANG S, HOU Z, DU X M, et al. Assessment of biostimulation and bioaugmentation for removing chlorinated volatile organic compounds from groundwater at a former manufacture plant[J]. Biodegradation, 2016,27(4/5/6):1-14.
    [37]
    MAGNUSON J K, ROMINE M F, BURRIS D R, et al. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes:sequence of tceA and substrate range characterization[J]. Applied and Environmental Microbiology, 2000,66(12):5141-5147.
    doi: 10.1128/AEM.66.12.5141-5147.2000
    [38]
    DUHAMEL M, WEHR S D, YU L, et al. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene,trichloroethene,cis-dichloroethene and vinyl chloride[J]. Water Research, 2002,36(17):4193-4202.
    doi: 10.1016/s0043-1354(02)00151-3 pmid: 12420924
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(465) PDF Downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return