Volume 11 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Ruibin, PAN Zhuoxi, WANG Leyang, ZHANG Yan, XI Daoguo. Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 91-96. doi: 10.12153/j.issn.1674-991X.20200128
Citation: ZHANG Ruibin, PAN Zhuoxi, WANG Leyang, ZHANG Yan, XI Daoguo. Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 91-96. doi: 10.12153/j.issn.1674-991X.20200128

Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland

doi: 10.12153/j.issn.1674-991X.20200128
  • Received Date: 2020-05-22
  • Publish Date: 2021-01-20
  • In view of the poor nitrogen and phosphorus removal efficiency of constructed wetland, the immobilized bacteria and the immobilized bacteria and algae were used as the substrate to investigate the effects of the control (gravel) group,the immobilized bacteria group and the immobilized bacteria and algae group on nitrogen and phosphorus removal in the constructed wetland. The results showed that the immobilized bacteria group and the immobilized bacteria and algae group enhanced the load resistance and stability of the wetland system, and the pollutants in the water body could be quickly removed in the early stage of wetland operation. The immobilized bacteria and algae group, the immobilized bacteria group and the gravel group began to stabilize the effluent on the 40th, 48th and 56th day of wetland operation, respectively. The stability of effluent quality of the immobilized bacteria group and the immobilized bacteria and algae group was better than that of the gravel group, reaching Level 1 A standard of Discharge Standard of Pollutants for Urban Sewage Treatment Plants (GB 18918-2002). The algae powder and its adsorbed organic matter could be used as supplementary carbon source to enhance nitrogen removal. The effluent concentrations of NH3-N、TP and CODCr from the immobilized bacteria and algae group reached Class Ⅴ standard of Environmental Quality Standards for Surface Water (GB 3838-2002). The removal rates of CODCr, NH3-N, TN and TP were 58.10%, 81.47%, 86.70% and 85.54%, respectively.

     

  • loading
  • [1]
    刘存歧, 袁雅心, 王孟颖, 等. 城市污水处理厂尾水生物毒性研究[J]. 安全与环境学报, 2018,18(6):2383-2389.

    LIU C Q, YUAN Y X, WANG M Y, et al. On the biological ecotoxicity of the effluent from the municipal sewage-treating plant[J]. Journal of Safety and Environment, 2018,18(6):2383-2389.
    [2]
    张鹤清, 朱帅, 吴振军, 等. 城镇污水处理厂“准Ⅳ类”标准提标改造技术简析[J]. 环境工程, 2019,37(6):26-30.

    ZHANG H Q, ZHU S, WU Z J, et al. Analysis of “quasi-category Ⅳ” standard upgrading and reconstruction technology for municipal wastewater treatment plants[J]. Environmental Engineering, 2019,37(6):26-30.
    [3]
    KETCHESON S J, PRICE J S, SUTTON O, et al. The hydrological functioning of a constructed fen wetland watershed[J]. Science of the Total Environment, 2017, 603/604:593-605.
    doi: 10.1016/j.scitotenv.2017.06.101
    [4]
    颜秉斐, 肖书虎, 廖纯刚, 等. 潜流人工湿地长效运行脱氮研究进展[J]. 环境工程技术学报, 2019,9(3):239-244.

    YAN B F, XIAO S H, LIAO C G, et al. Research progress of long-term nitrogen removal in subsurface flow constructed wetlands[J]. Journal of Environmental Engineering Technology, 2019,9(3):239-244.
    [5]
    邵媛媛, 周军伟, 母锐敏, 等. 中国城市发展与湿地保护研究[J]. 生态环境学报, 2018,27(2):381-388.

    SHAO Y Y, ZHOU J W, MU R M, et al. City Development and wetlands protection in China[J]. Ecology and Environmental Sciences, 2018,27(2):381-388.
    [6]
    GILL L W, RING P, CASEY B, et al. Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway[J]. Science of the Total Environment, 2017, 601/602:33-44.
    [7]
    刘莹, 刘晓晖, 张亚茹, 等. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018,37(5):1118-1127.

    LIU Y, LIU X H, ZHANG Y R, et al. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry, 2018,37(5):1118-1127.
    [8]
    SUNG K O, YEON C S, WON Y J, et al. 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite[J]. Pubmed, 2018,259:268-275.
    [9]
    寇希元, 张晓青, 张雨山, 等. 固定化藻菌去除海水冲厕污水中氮磷的实验研究[J]. 环境工程学报, 2011,5(12):2703-2706.

    KOU X Y, ZHANG X Q, ZHANG Y S, et al. Experimental study on removing nitrogen and phosphorus from seawater toilet-flushing sewage by immobilized chlorella and bacteria[J]. Chinese Journal of Environmental Engineering, 2011,5(12):2703-2706.
    [10]
    王春喜, 余关龙, 张登祥, 等. 固定化反硝化菌联合固体碳源小球处理低碳氮比污水的性能研究[J]. 环境污染与防治, 2018,40(8):870-874.

    WANG C X, YU G L, ZHANG D X, et al. Study on performance of solid carbon source pellets combined with immobilized denitrifying bacteria for treating wastewater with low C/N ratio[J]. Environmental Pollution and Control, 2018,40(8):870-874.
    [11]
    刘少敏, 储磊, 朱敬林. 固定化硝化细菌去除生活污水中的氨氮[J]. 环境工程学报, 2014,8(10):4261-4266.

    LIU S M, CHU L, ZHU J L. Removal of ammonia nitrogen from sewage by immobilization nitrification bacteria[J]. Chinese Journal of Environmental Engineering, 2014,8(10):4261-4266.
    [12]
    张彬彬, 王开春, 田凤蓉, 等. 高效降解生活污水COD混合菌株的筛选及固定化研究[J]. 环境科技, 2012,25(1):9-12.

    ZHANG B B, WANG K C, TIAN F R, et al. Studies on screening and immobilization of high effective mixed culture for domestic sewage degrading[J]. Environmental Science and Technology, 2012,25(1):9-12.
    [13]
    唐青青. 蛋白核小球藻对单一及复合污染水中重金属的生物吸附研究[D]. 杭州:浙江工商大学, 2015.
    [14]
    李恺, 耿存珍, 张阳, 等. 活性和非活性海藻吸附重金属的研究[J]. 环境工程, 2013,31(1):51-55.

    LI K, GENG C Z, ZHANG Y, et al. Research on active and inactive algae absorbing heavy metal[J]. Environmental Engineering, 2013,31(1):51-55.
    [15]
    骆巧琦, 陈长平, 梁君荣, 等. 利用藻类去除电镀废水中重金属的实验研究[J]. 厦门大学学报(自然科学版), 2006(增刊1):277-280.

    LUO Q Q, CHEN C P, LIANG J R, et al. The study on heavy metals removal from the plating industrial wastewater by algae[J]. Journal of Xiamen University (Natural Science), 2006(Suppl 1):277-280.
    [16]
    LI Y P, ZHANG H K, ZHU L Q, et al. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system:a case study[J]. Bioresource Technology, 2020,309:123310.
    doi: 10.1016/j.biortech.2020.123310 pmid: 32325377
    [17]
    DECEZARO S T, WOLFF D B, ARAÚJO R K, et al. Vertical flow constructed wetland planted with Heliconia psittacorum used as decentralized post-treatment of anaerobic effluent in Southern Brazil[J]. Journal of Environmental Science and Health,Part A, 2018,53(13):1131-1138.
    doi: 10.1080/10934529.2018.1530106
    [18]
    张瑞斌, 奚道国, 王乐阳, 等. A/O+铝污泥填料人工湿地组合工艺处理农村生活污水的效果[J]. 环境工程技术学报, 2019,9(2):145-150.

    ZHANG R B, XI D G, WANG L Y, et al. Effect of A/O+aluminum sludge filled constructed wetland combined process on rural domestic sewage[J]. Journal of Environmental Engineering Technology, 2019,9(2):145-150.
    [19]
    余凯锋. 波形潜流人工湿地处理重污染河水的试验研究[D]. 兰州:兰州交通大学, 2016.
    [20]
    刘树元, 阎百兴, 王莉霞. 潜流人工湿地中氮磷污染物净化的分层效应研究[J]. 环境科学, 2011,32(3):723-728.

    LIU S Y, YAN B X, WANG L X. Segregation effect of purification for nitrogen and phosphate pollution in the subsurface flow constructed wetlands[J]. Environmental Science, 2011,32(3):723-728.
    [21]
    李永华. 固定化菌-藻体系净化养殖废水协同作用的研究[D]. 北京:北京交通大学, 2010.
    [22]
    黄强, 张明强. 固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环境工程技术学报, 2012,2(3):247-252.
    doi: 10.3969/j.issn.1674-991X.2012.03.038

    HUANG Q, ZHANG M Q. Biodegradation of p-nitrophenol by immobilized cells of Pseudomonas aeruginosa[J]. Journal of Environmental Engineering Technology, 2012,2(3):247-252. doi: 10.3969/j.issn.1674-991X.2012.03.038
    [23]
    谭良良, 解伊瑞文, 白少元, 等. 基质结构对潜流人工湿地氮磷降解规律的影响[J]. 环境工程学报, 2014,8(11):4669-4673.

    TAN L L, XIE Y R W, BAI S Y, et al. Effect of substrate structure on pollutant degradations through substrate of horizontal subsurface flow constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2014,8(11):4669-4673.
    [24]
    赵东源, 张生, 赵胜男, 等. 基于除磷效果的人工湿地基质组合筛选及影响因素的动力学分析[J]. 环境污染与防治, 2018,40(10):1085-1089.

    ZHAO D Y, ZHANG S, ZHAO S N, et al. Screening of construct wetland matrix combinations base on phosphorus removal efficiency and kinetics analysis of different effect factor[J]. Environmental Pollution and Control, 2018,40(10):1085-1089.
    [25]
    李小艳, 王荣坤, 曾正明, 等. 邛海浅水湖带及其附近人工湿地中沉水植物底质以上植株中氮和磷含量[J]. 湿地科学, 2019,17(6):663-669.

    LI X Y, WANG R K, ZENG Z M, et al. Nitrogen and phosphorus contents of submerged plants above substrate in shallow region of Qionghai Lake and around constructed wetlands[J]. Wetland Science, 2019,17(6):663-669.
    [26]
    张翔凌. 不同基质对垂直流人工湿地处理效果及堵塞影响研究[D]. 北京(武汉):中国科学院研究生院(水生生物研究所), 2007.
    [27]
    史鹏博, 朱洪涛, 孙德智. 人工湿地不同填料组合去除典型污染物的研究[J]. 环境科学学报, 2014,34(3):704-711.

    SHI P B, ZHU H T, SUN D Z. Removal efficiency of typical pollutants by different substrate combinations for constructed wetlands[J]. Acta Scientiae Circumstantiae, 2014,34(3):704-711.
    [28]
    傅海燕, 许鹏成, 柴天, 等. 3种载体固定化菌藻共生系统脱氮除磷效果的对比[J]. 环境工程学报, 2013,7(9):3256-3262.

    FU H Y, XU P C, CHAI T, et al. Comparation of nitrogen and phosphorus removal by coimmobilized bacteria-algae system with three kinds of carriers[J]. Chinese Journal of Environmental Engineering, 2013,7(9):3256-3262.
    [29]
    毛书端, 张小平, 牛曼. 2种藻菌固定化改进方法的比较及优化研究[J]. 中国环境科学, 2012,32(5):869-874.

    MAO S D, ZHANG X P, NIU M. Optimization and comparison of two improved methods of algae-bacteria immobilized[J]. China Environmental Science, 2012,32(5):869-874.
    [30]
    环境保护部. 人工湿地污水处理工程技术规范:HJ 2005—2010[S]. 北京: 中国环境科学出版社, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(473) PDF Downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return