Volume 10 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
WANG Rui, XU Yirong, MENG Kexin, TANG Wei, YANG Ziyi, WANG Wen. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179
Citation: WANG Rui, XU Yirong, MENG Kexin, TANG Wei, YANG Ziyi, WANG Wen. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179

Development of research on the conversion of carbon dioxide into fuel and high value-added products

doi: 10.12153/j.issn.1674-991X.20190179
More Information
  • Corresponding author: WANG Wen E-mail: wangwen@mail.buct.edu.cn
  • Received Date: 2019-10-22
  • Publish Date: 2020-07-20
  • Carbon dioxide(CO2) can be converted into clean fuel and high value-added products by CO2 capture and conversion technology, which is one of the effective ways to alleviate energy problems in the future. According to the mechanism of CO2 conversion, combined with the development of CO2 conversion technology in recent years, the research progress of the preparation of a series of high value-added products, such as methanol, formic acid, ethanol and acetic acid, by catalytic conversion technology, electrochemical reduction technology, photochemical conversion technology, photoelectric catalytic conversion technology and biological conversion technology were mainly introduced. Based on the existing technology, the CO2 conversion technology would be further developed in combination with many fields such as development of new catalysts, and cultivation and optimization of microorganisms with the function of CO2 conversion, which could play a solid foundation for large-scale industrial production and practical application of CO2 conversion technology.

     

  • loading
  • [1]
    ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon:from CO2 to chemicals,materials,and fuels:technological use of CO2[J]. Chemical Reviews, 2014,114(3):1709-1742.
    doi: 10.1021/cr4002758 pmid: 24313306
    [2]
    关毅. 2017年大气碳水平达80万年以来最高[J]. 自然杂志, 2018,40(5):54.
    [3]
    王丽敏, 苏连江. 自然科学基础:无机化学卷[M]. 哈尔滨: 哈尔滨地图出版社, 2004: 315.
    [4]
    张琪, 许武韬, 刘予宇, 等. 二氧化碳电化学还原概述[J]. 自然杂志, 2017,39(4):242-250.

    ZHANG Q, XU W T, LIU Y Y, et al. An overview of electrochemical reduction of carbon dioxide[J]. Chinese Journal of Nature, 2017,39(4):242-250.
    [5]
    METTE M, MIKKEL J, FREDERIK C K. The teraton challenge:a review of fixation and transformation of carbon dioxide[J]. Energy Environment Science, 2010,3(1):43-81.
    doi: 10.1039/B912904A
    [6]
    王伟建, 郑小慧, 晁会霞, 等. 二氧化碳利用新途径的研究进展评述[J]. 钦州学院学报, 2018,173(5):22-28.

    WANG W J, ZHENG X H, CHAO H X, et al. Review on the research progress of new approaches to the utilization of carbon dioxide[J]. Journal of Qinzhou University, 2018,173(5):22-28.
    [7]
    BONURA G, CORDARO M, CANNILLA C, et al. Catalytic behaviour of a bifunctional system for the one step synjournal of DME by CO2 hydrogenation[J]. Catalysts, 2013,288:51-57.
    [8]
    GRACA I, GONZALEZ L V, BACARIZA M C, et al. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Applied Catalysts, 2014,147:101-110.
    [9]
    邵怀启, 钟顺和, 郭俊宝. CO2氧化丙烷脱氢制丙烯用Pd-Cu/V2O5-SiO2催化剂的研究[J]. 催化学报, 2004,25(2):143-148.

    SHAO H Q, ZHONG S H, GUO J B. Pd-Cu/V2O5-SiO2 catalyst for propane oxidative dehydrogenation with CO2 to propylene[J]. Chinese Journal of Catalysis, 2004,25(2):143-148.
    [10]
    HUANG W, SUN W Z, LI F. Efficient synjournal of ethanol and acetic acid from methane and carbon dioxide with a continuous,stepwise reactor[J]. American Institute of Chemical Engineers Journal, 2010,56(5):1279-1284.
    [11]
    BARROS B S, MELO D M, LIBS S, et al. CO2 reforming of methane over La2NiO4/α-Al2O3 prepared by microwave assisted self-combustion method[J]. Applied Catalysis A:General, 2010,378(1):69-75.
    doi: 10.1016/j.apcata.2010.02.001
    [12]
    BOOGAERTS I, NOLAN S P. Carboxylation of C—H bonds using N-het-erocyclic carbene gold(Ⅰ) complexes[J]. Journal of American Chemical Society, 2010,132(26):8858-8859.
    doi: 10.1021/ja103429q
    [13]
    ROSEN B A, SALEHI K A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334:643-644.
    doi: 10.1126/science.1209786 pmid: 21960532
    [14]
    QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631.
    doi: 10.1039/c3cs60323g pmid: 24186433
    [15]
    AYD N R, DO A, HULVA Z, et al. Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol[J]. Applied Catalysis B:Environmental, 2013,140/141:478.
    [16]
    LAWRENCE Y S L, WONG K Y. Electrocatalytic reduction of carbon dioxide[J]. Chemistry, 2017,3(5):717-718.
    [17]
    蒋永, 苏敏, 张尧, 等. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013,19(5):833-837.
    doi: 10.3724/SP.J.1145.2013.00833

    JIANG Y, SU M, ZHANG Y, et al. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems[J]. Chinese Journal of Applied and Environmental Biology, 2013,19(5):833-837. doi: 10.3724/SP.J.1145.2013.00833
    [18]
    MARTINDALE B C M, COMPTON R G. Formic acid electro-synjournal from carbon dioxide in a room temperature ionic liquid[J]. Chemical Communications, 2012,48(52):6487.
    pmid: 22622393
    [19]
    郑宁来. 二氧化碳一步转化为甲酸和乙醇[J]. 合成技术及应用, 2017(4):58.

    ZHENG N L. Content control of iso-phthalic acid during bottle PET chips producing[J]. Synthetic Technology & Application, 2017(4):58.
    [20]
    WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel[J].Nature Communictions, 2017(8):151.
    [21]
    AZIZ M A A, JALIL A A, TRIWABYONO S, et a1. CO2 methanation over heterogeneous catalysts:recent progress and future prospects[J]. Green Chemistry, 2015,17:2647-2663.
    doi: 10.1039/C5GC00119F
    [22]
    AGARWAL A S, ZHAI Y, HILL D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid:engineering and economic feasibility[J]. ChemSusChem, 2011,4(9):1301-1310.
    pmid: 21922681
    [23]
    张现萍, 黄海燕, 靳红利. 水溶液中电化学还原CO2的研究进展[J]. 化工进展, 2015,34(12):4139-4144.
    doi: 10.16085/j.issn.1000-6613.2015.12.002

    ZHANG X P, HUANG H Y, JIN H L. Research progress of electrochemical reduction of CO2 in aqueous solution[J]. Chemical Progress, 2015,34(12):4139-4144. doi: 10.16085/j.issn.1000-6613.2015.12.002
    [24]
    ZHANG S J, HUO F. Angstrom science:exploring aggregates from a new viewpoint[J]. Green Energy & Environment, 2016(1):79-82.
    [25]
    TRAN N H, PHILIPPE S, GWENAELLE R, et al. Porous dendritic copper:an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chemical Science, 2017,8(1):742-747.
    pmid: 28451222
    [26]
    LINGAMPALLI S R, AYYUB M M, RAO C N R. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748.
    doi: 10.1021/acsomega.7b00721 pmid: 31457612
    [27]
    INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocata-lytie reduetion of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979,277:637-638.
    doi: 10.1038/277637a0
    [28]
    LONG R, LI Y, LIU Y, et al. Isolation of Cu atoms in Pd lattice:forming highly selective sites for photocatalytic conversion of CO2 to CH4[J]. Journal of the American Chemical Society, 2017,139(12):4486-4492.
    pmid: 28276680
    [29]
    WANG D F, TONG H, OUYANG S X, et al. Semiconductor-based artificial photosynjournal for conversion of carbon dioxide into hydrocarbon fuels[J]. Science, 2014(1):62-67.
    doi: 10.1007/BF02839314 pmid: 14663854
    [30]
    NEATU S, MACIA A J A, PATRICIA C, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water[J]. Journal of the American Chemical Society, 2014,136(45):15969-15976.
    doi: 10.1021/ja506433k pmid: 25329687
    [31]
    RAMSES S, ANNEMIE B. Plasma technology:a novel solution for CO2 conversation[J]. Chemical Society Reviews, 2017,46(19):5805-5863.
    doi: 10.1039/c6cs00066e pmid: 28825736
    [32]
    WANG C, SUN Z, ZHENG Y, et al. Recent progress in visible light photocatalytic conversion of carbon dioxide[J]. Journal of Materials Chemistry A, 2019,136(45):847-862.
    [33]
    THOMPSON J F, CHEN B, KUBO M, et al. Artificial photosynjournal device development for CO2 photoelectrochemical conversion[J].MRS Advance, 2016(6):447-452.
    [34]
    ONG W J, PUTRI L K, TAN Y C, et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction:a combined experimental and first-principles DFT study[J]. Nano Research, 2017,10(5):1673-1696.
    doi: 10.1007/s12274-016-1391-4
    [35]
    SHEN Q, CHEN Z, HUANG X, et al. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays[J]. Environmental Science & Technology, 2015,49:5828-5835.
    doi: 10.1021/acs.est.5b00066 pmid: 25844931
    [36]
    IRTEM E, HERNANDEZ A. A photoelectrochemical flow cell design for the efficient CO2 conversion to fuels[J]. Electrochimica Acta, 2017,240:225-230.
    doi: 10.1016/j.electacta.2017.04.072
    [37]
    JIANG M, WU H, LI Z, et al. Highly selective photoelectrochemical conversion of carbon dioxide to formic acid[J]. ACS Sustainable Chemistry & Engineering, 2018(1):82-87.
    [38]
    LI F, ZHANG L, TONG J, et al. Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor[J]. Nano Energy, 2016,27:320-329.
    doi: 10.1016/j.nanoen.2016.06.056
    [39]
    YUAN J, WANG X, GU C, et al. Photoelectrocatalytic reduction of carbon dioxide to methanol at cuprous oxide foam cathode[J]. RSC Advance, 2017,7:24933-24939.
    doi: 10.1039/C7RA03347H
    [40]
    YANG Z, WANG H, SONG W, et al. One dimensional SnO2 NRs/Fe2O3 NTs with dual synergistic effects for photoelectrocatalytic reduction CO2 into methanol[J]. Journal of Colloid and Interface Science, 2017,486:232-240.
    doi: 10.1016/j.jcis.2016.09.055 pmid: 27716463
    [41]
    KAYKOBADR K M, RUEY O H, HAMIDAH A, et al. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation[J]. International Journal of Hydrogen Energy, 2018,39(43):18185-18193.
    [42]
    YUAN J, XIAO B, HAO C. Photoelectrochemical reduction of carbon dioxide to ethanol at Cu2O foam cathode[J]. International Journal of Electrochemical Science, 2017,12:8288-8294.
    [43]
    AMPELLI C, PASSALACQUA R, GENOVESE C, et al. A novel photo-electrochemical approach for the chemical recycling of carbon dioxide to fuels[J]. Chemical Engineering Transactions, 2011,25:683-688.
    doi: 10.3303/CET1125114
    [44]
    MARTIN M R, FORNERO J J, REBECCA S, et al. A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2[J]. International Microbiological Journal, 2013(7):157529.
    [45]
    BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors atmesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015,49(20):12585-12593.
    doi: 10.1021/acs.est.5b03451 pmid: 26390125
    [46]
    DEMLER M, WEUSTER B D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii[J]. Biotechnology & Bioengineering, 2011,108(2):470-474.
    doi: 10.1002/bit.22935 pmid: 20830677
    [47]
    HU P, RISMANIYAZDI H, TEPHANOPOULOS G. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica[J]. AIChE Journal, 2013,59(9):3176-3183.
    doi: 10.1002/aic.14127
    [48]
    FERNANDEZ N A, ABUBACKAR H N, VEIGA M C, et al. Production of chemicals from C1 gases (CO,CO2) by Clostridium carboxidivorans[J]. World Journal of Microbiology and Biotechnology, 2017,33(3):43.
    doi: 10.1007/s11274-016-2188-z pmid: 28160118
    [49]
    TANNER R S, MILLER L M, YANG D C. Clostridium ljungdahlii sp.nov.,an acetogenic species in clostridial rRNA homology group Ⅰ[J]. International Journal of Systematic Bacteriology, 1993,43(2):232-236.
    doi: 10.1099/00207713-43-2-232 pmid: 7684239
    [50]
    GUNNARSSON I B, KARAKASHEV D, ANGELIDAKI I. Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z[J]. Industrial Crops & Products, 2014,62:125-129.
    [51]
    COK B, TSIROPOULOS I, ROES A L, et al. Succinic acid production derived from carbohydrates:an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels Bioproducts & Biorefining, 2014,8(1):16-29.
    [52]
    MUZUMDAR A V, PANGARKAR V G. Reduction of maleic acid to succinic acid on titanium cathode[J]. Organic Process Research & Development, 2004,8(4):685-688.
    [53]
    GUNNARSSON I B, ALVARADO M M, ANGELIDAKI I. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production[J]. Environmental Science & Technology, 2014,48(20):12464.
    doi: 10.1021/es504000h pmid: 25275929
    [54]
    陆小青. 藻类生物燃料的研究进展[J]. 城市道桥与防洪, 2012(6):393-398.
    [55]
    嵇磊, 张利雄, 姚志龙, 等. 利用藻类生物质制备生物燃料研究进展[J]. 石油学报(石油加工), 2007,23(6):1-5.

    JI L, ZHANG L X, YAO Z L, et al. Review on the progress of producing bio-fuel from microalgae[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2007,23(6):1-5.
    [56]
    王键, 杨剑, 王中原, 等. 全球碳捕集与封存发展现状及未来趋势[J]. 环境工程, 2012,30(4):118-120.

    WANG J, YANG J, WANG Z Y, et al. The present status and future trends of global carbon capture and storage[J]. Environmental Engineering, 2012,30(4):118-120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(553) PDF Downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return