Volume 10 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
FU Dong, FU Xinlie, WANG Chengduan, GONG Yanchuan, ZHOU Lüshan. Study on the treatment of domestic sewage by stable surface flow - subsurface flow combination constructed wetland[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 598-605. doi: 10.12153/j.issn.1674-991X.20190176
Citation: FU Dong, FU Xinlie, WANG Chengduan, GONG Yanchuan, ZHOU Lüshan. Study on the treatment of domestic sewage by stable surface flow - subsurface flow combination constructed wetland[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 598-605. doi: 10.12153/j.issn.1674-991X.20190176

Study on the treatment of domestic sewage by stable surface flow - subsurface flow combination constructed wetland

doi: 10.12153/j.issn.1674-991X.20190176
More Information
  • Corresponding author: FU Xinlie E-mail: 277094682@qq.com
  • Received Date: 2019-10-21
  • Publish Date: 2020-07-20
  • The stable surface flow - subsurface flow combination constructed wetland system was designed and constructed, which was composed of collecting tank, anaerobic pool, stable surface flow constructed wetland(FSSFW) and horizontal subsurface flow constructed wetland(SFCW). The whole system was built based on local topography, and the sewage flowed from the former unit to the next unit only by gravity. After a month of domestication, the purification effect in pilot-scale of domestic sewage was studied. The removal effects of SS, COD, NH3-N, TN and TP in each unit and the system of the stable surface flow - subsurface flow constructed wetland were monitored and analyzed when the design of hydraulic load and high hydraulic load were 0.108 and 0.180 m3/(m2·d), respectively. The results showed that the average removal rate of SS, COD, NH3-N, TN and TP was 91.6%, 81.2%, 87.7%,77.3% and 86.3% respectively under the design hydraulic load. Moreover, the average removal rate of SS and COD by FSSFW was higher than that by SFCW and anaerobic pool, but the average removal rate of NH3-N, TN and TP by SFCW was higher than that by anaerobic pool and FSSFW. In addition, the anaerobic pool had the lowest contribution to the removal rate of each pollution index. Under the high hydraulic load, the removal rates of SS, COD, NH3-N, TN and TP was 91.2%, 73.1% ,84.2% ,69.0% and 82.7%, respectively. SFCW played a major role in the removal of SS, COD, NH3-N and TN while FSSFW and SFCW had no significant difference in the removal contribution rate of TP, however, the anaerobic pool had the lowest contribution to the removal rate of each pollution index. The operating hydraulic load of the system could be set between 0.108 and 0.180 m3/(m2·d) in summer, while the operating hydraulic load should be set strictly according to the design in winter. During the pilot test of design hydraulic load rate, all the effluent indicators of the system could meet the Grade Ⅰ level B standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB 18918-2002).

     

  • loading
  • [1]
    夏汉平. 人工湿地处理污水技术的机理与效率[J]. 生态学杂志, 2002,21(4):51-59.

    XIA H P. Mechanisms and efficiencies on wastewater treatment with constructed wetlands:a review[J]. Chinese Journal of Ecology, 2002,21(4):51-59.
    [2]
    MOLINOS-SENANTE M, GÓMEZ T, CABALLERO R, et al. Assessment of wastewater treatment alternatives for small communities:an analytic network process approach[J]. Science of the Total Environment, 2015,532:676-687.
    doi: 10.1016/j.scitotenv.2015.06.059 pmid: 26119382
    [3]
    KADLEC R, WALLACE S. Treatment wetlands[M]. Boca Raton: CRC Press, 2009.
    [4]
    LIN Y, JING S, LEE D, et al. Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates[J]. Bioresource Technology, 2008,99(16):7504-7513.
    doi: 10.1016/j.biortech.2008.02.017 pmid: 18387297
    [5]
    STOTTMEISTER U, WIEBNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003,22(1/2):93-117.
    doi: 10.1016/j.biotechadv.2003.08.010
    [6]
    卢少勇, 张彭义, 余刚, 等. 农田排灌水的稳定塘-植物床复合系统处理[J]. 中国环境科学, 2004,24(5):605-609.

    LU S Y, ZHANG P Y, YU G, et al. Stabilization pond-plant bed composite system treatment of farm land irrigation and drainage water[J]. China Environmental Science, 2004,24(5):605-609.
    [7]
    白军红, 欧阳华, 邓伟, 等. 湿地氮素传输过程研究进展[J]. 生态学报, 2005,25(2):326-333.

    BAI J H, OUYANG H, DENG W, et al. A review on nitrogen transmission process in natural wetlands[J]. Acta Ecologica Sinica, 2005,25(2):326-333.
    [8]
    JENSSEN P D, MAEHLUM T, KROGSTAD T. Potential use of constructed wetlands for wastewater treatment in northern environments[J]. Water Science and Technology, 1993,28:149-157.
    [9]
    尹炜, 李培军, 尹澄清, 等. 潜流人工湿地的局限性与运行问题[J]. 中国给水排水, 2004,20(11):36-38.

    YIN W, LI P J, YIN C Q, et al. Application limitation and operation of subsurface flow constructed wetland[J]. Chinese Water & Wastewater, 2004,20(11):36-38.
    [10]
    BODIN H, MIETTO A, EHDE P M, et al. Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands[J]. Ecological Engineering, 2012,49:201-211.
    doi: 10.1016/j.ecoleng.2012.07.009
    [11]
    GERKE S B L A, XU Y. Nitrogen transformations in a wetland receiving lagoon effluent: sequential model and implications for water reuse[J]. Water Research, 2001,35(16):3857-3866.
    pmid: 12230168
    [12]
    张兵之, 吴振斌, 徐光来. 人工湿地的发展概况和面临的问题[J]. 环境科学与技术, 2004,26(增刊2):87-90.

    ZHANG B Z, WU Z B, XU G L. General development and problem for constructed wetlands[J]. Environmental Science & Technology, 2004,26(Suppl 2):87-90.
    [13]
    YOUSEFI Z, MOHSENI-BANDPEI A. Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus[J]. Ecological Engineering, 2010,36(6):777-782.
    doi: 10.1016/j.ecoleng.2010.02.002
    [14]
    吴树彪, 董仁杰. 人工湿地污水处理应用与研究进展[J]. 水处理技术, 2008,34(8):5-9.

    WU S B, DONG R J. The application and research progress of constructed wetland for wastewater treatment[J]. Technology of Water Treatment, 2008,34(8):5-9.
    [15]
    张瑞斌, 奚道国, 王乐阳, 等. A/O+铝污泥填料人工湿地组合工艺处理农村生活污水的效果[J]. 环境工程技术学报, 2019,9(2):145-150.

    ZHANG R B, XI D G, WANG L Y, et al. Effect of A/O + aluminum sludge filled constructed wetland combined process on rural domestic sewage[J]. Journal of Environmental Engineering Technology, 2019,9(2):145-150.
    [16]
    杨金刚, 王海燕, 周岳溪, 等. 三格厌氧池-垂直流人工湿地处理农村灰水[J]. 环境工程技术学报, 2013,3(2):85-91.
    doi: 10.3969/j.issn.1674-991X.2013.02.015

    YANG J G, WANG H Y, ZHOU Y X, et al. Study of combined three-chamber anaerobic reactor and vertical subsurface flow constructed wetland process for rural grey wastewater treatment[J]. Journal of Environmental Engineering Technology, 2013,3(2):85-91. doi: 10.3969/j.issn.1674-991X.2013.02.015
    [17]
    胡杰军, 董婧, 沈志强, 等. 生物沸石人工湿地强化硝化处理污水处理厂二级出水研究[J]. 环境工程技术学报, 2018,8(3):274-281.

    HU J J, DONG J, SHEN Z Q, et al. Nitrification performance secondary effluent from MWTP using bio-zeolite constructed wetland[J]. Journal of Environmental Engineering Technology, 2018,8(3):274-281.
    [18]
    葛媛, 郑于聪, 王怡雯, 等. 复合人工湿地在水处理中的应用进展[J]. 环境科学与技术, 2018,41(1):99-108.
    doi: 10.1021/es0614518 pmid: 17265933

    GE Y, ZHENG Y C, WANG Y W, et al. Research progresses in wastewater treatment by hybrid constructed wetlands[J]. Environmental Science & Technology, 2018,41(1):99-108. doi: 10.1021/es0614518 pmid: 17265933
    [19]
    刘婧, 邢奕, 金相灿, 等. 复合垂直流湿地去除模拟河水中氮磷的研究[J]. 环境工程技术学报, 2012,2(1):29-35.
    doi: 10.3969/j.issn.1674-991X.2012.01.006

    LIU J, XING Y, JIN X C, et al. Study of nitrogen and phosphorus removal from simulated river water by integrated vertical flow wetland[J]. Journal of Environmental Engineering Technology, 2012,2(1):29-35. doi: 10.3969/j.issn.1674-991X.2012.01.006
    [20]
    夏艳阳, 崔理华. 复合垂直流-水平流人工湿地系统除氮效果的影响因素[J]. 环境工程技术学报, 2017,7(2):175-180.

    XIA Y Y, CUI L H. Influential factors of nitrogen removal efficiency by the integrated vertical flow and horizontal flow constructed wetland[J]. Journal of Environmental Engineering Technology, 2017,7(2):175-180.
    [21]
    王成端. 低成本污水处理技术及工程实例[M]. 北京: 化学工业出版社, 2008.
    [22]
    傅海霞, 王成端, 邓磊, 等. 折流式与推流式稳定表流湿地对比试验研究[J]. 水处理技术, 2011,37(2):69-72.

    FU H X, WANG C D, DENG L, et al. Comparative study of the folds and the pushing stable surface flow wetland[J]. Technology of Water Treatment, 2011,37(2):69-72.
    [23]
    黄勇, 王成端, 廖义, 等. 四川望佳人工湿地系统生活污水净化效果[J]. 环境工程学报, 2015,9(2):773-780.

    HUANG Y, WANG C D, LIAO Y, et al. Treatment efficiency of domestic wastewater at Sichuan Wangjia constructed wetland system[J]. Chinese Journal of Environmental Engineering, 2015,9(2):773-780.
    [24]
    中国市政工程西南设计研究院. 给水排水设计手册[M]. 2版.北京: 中国建设工业出版社, 2002.
    [25]
    环境保护部. 人工湿地污水处理工程技术规范:HJ 2005—2010[S]. 北京:中国环境科学出版社, 2011.
    [26]
    魏复盛. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002: 252-354.
    [27]
    王亚宜, 黎力, 马骁, 等. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J]. 环境科学学报, 2014,34(6):1362-1374.

    WANG Y Y, LI L, MA X, et al. Bio-characteristics of anammox bacteria and CANON anammox process[J]. Acta Scientiae Circumstantiae, 2014,34(6):1362-1374.
    [28]
    王宁宁, 赵阳国, 孙文丽, 等. 溶解氧含量对人工湿地去除污染物效果的影响[J]. 中国海洋大学学报, 2018,48(6):24-30.

    WANG N N, ZHAO Y G, SUN W L, et al. Effect of dissolved oxygen on the removal of pollutants in artificial wetland[J]. Periodical of Ocean University of China, 2018,48(6):24-30.
    [29]
    郑育毅, 林志龙, 李妍, 等. 自来水厂污泥基陶粒作为湿地填料处理生活污水[J]. 中国给水排水, 2016,32(13):112-115.

    ZHENG Y Y, LIN Z L, LI Y, et al. Ceramsite from waterworks sludge as media in constructed wetlands for treatment of municipal sewage[J]. China Water & Wastewater, 2016,32(13):112-115.
    [30]
    彭江燕. 不同水生植物影响污水处理效果的主要参数比较[J]. 云南环境科学, 1998,17(2):47-51.

    PENG J Y. Comparison of major parameters of the influence of various aqua-plants on waste water treatment[J]. Yunnan Environmental Science, 1998,17(2):47-51.
    [31]
    ZHU T, JENSSEN P D, MACHLUM T, et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA):potential filter media in treatment wetlands[J]. Water Science and Technology, 1997,35(5):103-108.
    [32]
    CUI L J, LI W, ZHOU J, et al. Influence of substrate depth and particle size on phosphorus removal in a surface flow constructed wetland[J]. Water Science and Technology, 2017,75(10):2291-2298.
    pmid: 28541936
    [33]
    WANG J, ZHANG L Y, LU S Y, et al. Contaminant removal from low-concentration polluted river water by bio-rack wetlands[J]. Journal of Environmental Sciences, 2012,24(6):1006-1013.
    doi: 10.1016/S1001-0742(11)60952-2
    [34]
    陈文音, 陈章和, 何其凡, 等. 两种不同根系类型湿地植物的根系生长[J]. 生态学报, 2007,27(2):450-458.
    doi: 10.1016/S1872-2032(07)60017-1

    CHEN W Y, CHEN Z H, HE Q F, et al. Root growth of wetland plants with different two types[J]. Acta Ecologica Sinica, 2007,27(2):450-458. doi: 10.1016/S1872-2032(07)60017-1
    [35]
    杨苛. 人工湿地植物的筛选及试验研究[D]. 南宁:广西大学, 2007.
    [36]
    梁雪, 贺峰, 徐栋, 等. 人工湿地植物的功能与选择[J]. 水生态学杂志, 2012,33(1):131-138.

    LIANG X, HE F, XU D, et al. Plant function and selection for constructed wetlands[J]. Journal of Hydroecology, 2012,33(1):131-138.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(466) PDF Downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return