Volume 10 Issue 3
May  2020
Turn off MathJax
Article Contents
TANG Shiqin, XIONG Lili, JIANG Rui, MAO Xuhui. Removal of nitrate in tail water by biomass-sulfur mixed denitrification process[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 414-423. doi: 10.12153/j.issn.1674-991X.20190143
Citation: TANG Shiqin, XIONG Lili, JIANG Rui, MAO Xuhui. Removal of nitrate in tail water by biomass-sulfur mixed denitrification process[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 414-423. doi: 10.12153/j.issn.1674-991X.20190143

Removal of nitrate in tail water by biomass-sulfur mixed denitrification process

doi: 10.12153/j.issn.1674-991X.20190143
More Information
  • Corresponding author: MAO Xuhui E-mail: clab@whu.edu.cn
  • Received Date: 2019-08-10
  • Publish Date: 2020-05-20
  • Tail water containing relatively high concentration of NO 3 - -N is often discharged even after secondary treatment process. A biomass-sulfur mixed denitrification system was constructed for the treatment of elevated concentration of NO 3 - -N in tail water, and its performance for the removal of NO 3 - -N was studied. The results of static experiments showed that woodchips-sulfur mixed denitrification system had good performance for the removal of nitrate (reaction rate constant 0.041 6 d-1) with the least conversion of NO 3 - -N and NH 4 + -N. The initial pH within the range of 6-9, and the woodchip/sulfur ratio of 0.5-2.0 had insignificant effect on the mixed denitrification process. The addition of iron fillings had a certain regulating effect on the pH of the system. In the dynamic experiments, mixed denitrification system with 50 g sulfur plus 25 g woodchips had a good removal effect on NO 3 - -N with initial concentration of 15 mg/L , and the removal efficiency of NO 3 - -N could reach 90%. The removal rate of high NO 3 - -N concentration of mixed denitrification system could be improved by changing the proportion of woodchips and sulfur or adding iron sawdust. Among the trials, mixed denitrification system of 50 g sulfur and 50 g woodchips could maintain a removal efficiency of 90% even for 30 mg/L of NO 3 - -N. Different initial NO 3 - -N concentrations had some effect on the abundance of microbial community in the reaction column, but had little effect on the structure of microbial community.

     

  • loading
  • [1]
    2017中国生态环境状况公报[J]. 环境经济, 2018,(11):12-13.
    [2]
    MIZUTA K, MATSUMOTO T, HATATE Y , et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology, 2004,95(3):255-257.
    doi: 10.1016/j.biortech.2004.02.015 pmid: 15288267
    [3]
    DEMIRAL H, GUNDUZOGLU G . Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse[J]. Bioresource Technology, 2010,101(6):1675-1680.
    doi: 10.1016/j.biortech.2009.09.087 pmid: 19854640
    [4]
    PRASHANTHA-KUMAR T K M, MANDLIMATH T R, SANGEETHA P , et al. Nanoscale materials as sorbents for nitrate and phosphate removal from water[J]. Environmental Chemistry Letters, 2017(7):1-12.
    [5]
    CHEN Y C, ZHANG Y, CHEN G G . Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater[J]. Water Research, 2003,37(10):2489-2495.
    doi: 10.1016/S0043-1354(03)00028-9 pmid: 12727261
    [6]
    YOUNG G K, BUNGAY H R, BROWN L M , et al. Chemical reduction of nitrate in water of reduction chemical nitrate in water[J]. Journal (Water Pollation Control Federation), 1964,36(3):395-398.
    [7]
    YANG G C C, LEE H L . Chemical reduction of nitrate by nanosized iron:kinetics and pathways[J]. Water Research, 2005,39(5):884-894.
    doi: 10.1016/j.watres.2004.11.030 pmid: 15743635
    [8]
    CAPUA F D, PIROZZI F, LENS P N L , et al. Electron donors for autotrophic denitrification[J]. The Chemical Engineering Journal, 2019,362:922-937.
    [9]
    XING W, LI D S, LI J L , et al. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification[J]. Bioresource Technology, 2016,211:240-247.
    doi: 10.1016/j.biortech.2016.03.044 pmid: 27019127
    [10]
    ASHOK V, HAIT S . Remediation of nitrate-contaminated water by solid-phase denitrification process:a review[J]. Environmental Science and Pollution Research, 2015,22(11):8075-8093.
    doi: 10.1007/s11356-015-4334-9 pmid: 25787220
    [11]
    OH S E, YOO Y B, YOUNG J C , et al. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J]. Journal of Biotechnology, 2002,92(1):1-8.
    doi: 10.1016/s0168-1656(01)00344-3 pmid: 11604167
    [12]
    WANG Z, HE S B, HUANG J C , et al. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water[J]. Environmental Pollution, 2018,238:562-572.
    doi: 10.1016/j.envpol.2018.03.080 pmid: 29605616
    [13]
    WEN J P, PAN L, DU L P , et al. The denitrification treatment of low C/N ratio nitrate-nitrogen wastewater in a gas-liquid-solid fluidized bed bioreactor[J]. Chemical Engineering Journal, 2003,94(2):155-159.
    doi: 10.1016/S1385-8947(03)00049-4
    [14]
    MOON H S, SHIN D Y, NAM K , et al. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier[J]. Chemosphere, 2008,73(5):720-728.
    doi: 10.1016/s1808-8694(15)30138-5 pmid: 18094819
    [15]
    ALVAREZ R S, CARDOSO R B, SALAZAR M , et al. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment[J]. Water Research, 2007,41(6):1258-1262.
    doi: 10.1016/j.watres.2006.12.039 pmid: 17296214
    [16]
    王海燕, 曲久辉, 雷鹏举 . 两种电化学-硫自养集成脱硝工艺的对比[J]. 环境化学, 2004,23(1):51-57.
    doi: 10.1111/ecc.12109 pmid: 23947545

    WANG H Y, QU J H, LEI P J . Comparison of two combined electrochemical and sulfur autotrophic denitrification processes[J]. Environmental Chemistry, 2004,23(1):51-57. doi: 10.1111/ecc.12109 pmid: 23947545
    [17]
    SAHINKAYA E, DURSUN N, KILIC A , et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment:control of sulfate production[J]. Water Research, 2011,45(20):6660-6667.
    doi: 10.1016/j.watres.2011.09.056 pmid: 22030084
    [18]
    LI R, FENG C P, HU W W , et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification(WSHAD) process for nitrate contaminated water remediation[J]. Water Research, 2016,89:171-179.
    doi: 10.1016/j.watres.2015.11.044 pmid: 26650451
    [19]
    BELLER H R . Anaerobic,nitrate-dependent oxidation of U(Ⅳ)oxide minerals by the chemolithoautotrophic bacterium thiobacillus denitrificans[J]. Applied and Environmental Microbiology, 2005,71(4):2170-2174.
    doi: 10.1128/AEM.71.4.2170-2174.2005 pmid: 15812053
    [20]
    YAO S, NI J R, CHEN Q , et al. Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature[J]. Bioresource Technology, 2013,127(1):151-157.
    doi: 10.1016/j.biortech.2012.09.098 pmid: 23131636
    [21]
    焦翔翔, 靳红燕, 王明明 . 我国秸秆沼气预处理技术的研究及应用进展[J]. 中国沼气, 2011,29(1):29-33.
    [22]
    杨世关, 李继红, 孟卓 , 等. 木质纤维素原料厌氧生物降解研究进展[J]. 农业工程学报, 2006,22(增刊1):120-124.

    YANG S G, LI J H, MENG Z , et al. Review on anaerobic biodegradation of lignocellulose[J]. Transactions of the CSAE, 2006,22(Suppl 1):120-124.
    [23]
    CHUNG J, AMIN K, KIM S , et al. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J]. Water Research, 2014,58:169-178.
    doi: 10.1016/j.watres.2014.03.071 pmid: 24755301
    [24]
    SONG B, LISA J A, TOBIAS C R . Linking DNRA community structure and activity in a shallow lagoonal estuarine system[J]. Frontiers in Microbiology, 2014,5:460.
    doi: 10.3389/fmicb.2014.00460 pmid: 25232351
    [25]
    BENVOUCEF N, CHEIKH A, DROUICHE N , et al. Denitrification of groundwater using Brewer’s spent grain as biofilter media[J]. Ecological Engineering, 2013,52:70-74.
    doi: 10.1016/j.ecoleng.2012.12.092
    [26]
    BANG S, JOHNSON M D, KORFIATIS G P , et al. Chemical reactions between arsenic and zero-valent iron in water[J]. Water Research, 2005,39(5):763-770.
    doi: 10.1016/j.watres.2004.12.022 pmid: 15743620
    [27]
    GUAN X H, SUN Y K, QIN H J , et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015,75:224-48.
    doi: 10.1016/j.watres.2015.02.034 pmid: 25770444
    [28]
    YOU G X, WANG P F, HOU J , et al. The use of zero-valent iron(ZVI)-microbe technology for wastewater treatment with special attention to the factors influencing performance:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2017,47(10):877-907.
    doi: 10.1080/10643389.2017.1334457
    [29]
    张超 . 硫自养-异养混合营养反硝化去除硝酸根运行性能及分子生态学研究[D]. 杭州:浙江工业大学, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(440) PDF Downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return