留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流域农业面源污染迁移过程与模型研究进展

黄国鲜 聂玉玺 张清寰 童思陈 赵健 梁东方 陈炜

黄国鲜,聂玉玺,张清寰,等.流域农业面源污染迁移过程与模型研究进展[J].环境工程技术学报,2023,13(4):1364-1372 doi: 10.12153/j.issn.1674-991X.20220981
引用本文: 黄国鲜,聂玉玺,张清寰,等.流域农业面源污染迁移过程与模型研究进展[J].环境工程技术学报,2023,13(4):1364-1372 doi: 10.12153/j.issn.1674-991X.20220981
HUANG G X,NIE Y X,ZHANG Q H,et al.Research progress of agricultural non-point source pollution migration process and model in basins[J].Journal of Environmental Engineering Technology,2023,13(4):1364-1372 doi: 10.12153/j.issn.1674-991X.20220981
Citation: HUANG G X,NIE Y X,ZHANG Q H,et al.Research progress of agricultural non-point source pollution migration process and model in basins[J].Journal of Environmental Engineering Technology,2023,13(4):1364-1372 doi: 10.12153/j.issn.1674-991X.20220981

流域农业面源污染迁移过程与模型研究进展

doi: 10.12153/j.issn.1674-991X.20220981
基金项目: 国家长江黄河重大专项(2021YFC3201502);国家重点研发计划项目(2021YFC3101701);江西省揭榜挂帅项目(20213AAG01012)
详细信息
    作者简介:

    黄国鲜(1975—),男,研究员,主要从事水生态环境模拟研究,huanggx@craes.org.cn

    通讯作者:

    聂玉玺(1997—),女,硕士研究生,主要研究方向为流域水环境模拟, 923196276@qq.com

  • 中图分类号: X143

Research progress of agricultural non-point source pollution migration process and model in basins

  • 摘要:

    当前农业面源污染仍是我国水污染的主要来源,面源污染过程涉及农业、水利、环境、生态等多学科交叉,是国内外环境污染学术研究和流域污染控制与管理关注的焦点之一。不同学科通常在不同的时空尺度上采用不同的方法研究农业面源污染的产生与迁移过程,如农业学科注重农田—山坡—流域尺度下灌溉、不同作物在不同阶段施肥、营养盐转化吸收及其土壤库收支与微生物对营养盐的作用等过程,但忽略了不同尺度或系统之间的迁移过程内在联系,尤其是较少开展集成模拟研究。本文综述了典型空间尺度(从田块到山坡,再到流域尺度)农业面源污染迁移过程及影响因素,总结了流域农业面源污染建模方法,提出在模型系统中除需要深入考虑田块、山坡等尺度的局部水文及其污染物产生、累积、释放与迁移外,还迫切需要综合考虑农田—山坡—流域系统的水文和污染物迁移过程与集成面源模型的研发。同时,针对农业面源污染迁移过程的尺度转换、建模方法和模型不确定性,分析了其现有研究存在的不足,并对未来研究进行了展望。

     

  • 图  1  不同空间尺度水文特性与污染物迁移路径

    Figure  1.  Hydrological characteristics and pollutant transport paths at different spatial scales

    表  1  流域面源污染模型机理统计

    Table  1.   Statistics of watershed non-point source pollution model mechanism

    模型类型模型名称关键方程式优缺点
    经验模型
    EC模型[40]
    $L = \displaystyle\sum\limits_{i = 1}^n { {E_{{ {{i} } } } }\left[ { {A_{ {j} } }\left( { {l_{{ {{k} } } } } } \right)} \right] + P}$
    式中:L为营养盐的损失量,kg;Ei为第i种营养源的输出系数;Aj为第j种土地利用类型面积(或牲畜或人口数),km2lk为第k种营养源输入量,kg;P为降水的营养盐输入量,kg
    优点:简化面源污染形成过程,降低监测数据的依赖性。缺点:出口系数固定造成误差较大且不能定量
    DECM(动态输出系数模型)[46] $\begin{gathered} L = \displaystyle\sum\limits_{i = 1}^n {D({\rm{pc} }{ {\rm{p} }_i})\left[ { {B_{{p} } }({J_{{q} } })} \right]} \\ {B_{{p} } }({J_{{q} } }) = f({\rm{land use,soil,slope,pcp} }) \\ \end{gathered}$
    式中:L为营养盐的损失量,kg;${D({\rm{pc} }{ {\rm{p} }_i}) }$为第i种营养源的动态输出系数,取决于降水量;pcp为流域的年降水量,mm;Bp为第p类面源污染响应单元的面积,km2,取决于土地利用、土壤类型、坡度、人口、牲畜和肥料以及农药利用;Jq为第q类营养源的营养输入量,kg,取决于模型计算的降水量、肥料和农药利用的营养输入量
    优点:减少计算量,提高大型无资料流域精度。缺点:不能量化小流域到大流域参数的不确定性
    机理过程模型 SWAT模型[44,47] $\begin{gathered} {P_{ {\text{surf} } } } = \dfrac{ { {P_{ {\text{sol} } } } \times Q} }{ { {\rho _{\text{b} } } \times {H_0} \times {k_{\text{d} } } } } \\ {\rm{N} }{ {\rm{O} }_{3{\text{surf} } } } = {\beta _{ {\rm{N} }{ {\rm{O} }_3} } } \times {C_{ {\rm{N} }{ {\rm{O} }_3},{\text{mob} } } } \times {Q_{ {\text{surf} } } } \\ \end{gathered}$
    式中:Psurf和NO3surf分别为迁移到径流中的可溶性磷和硝酸盐的量,kg/hm2Psol和$C_{ {\rm{NO} }_3,{\rm{mod}}}$分别为10 mm表层土壤流动水中磷和硝酸盐的浓度,kg/mm;$\beta_{ {\rm{NO} }_3 }$和kd分别为硝酸盐渗透系数和磷在土壤中的分配系数,m3/mg;ρb为干土的容重,mg/m3H0为表层土壤的深度,取10 mm
    优点:考虑汇流和沉积物的影响过程,易于使用。缺点:不能用于模拟单个洪水事件,参数必须本土化
    HSPF模型[45] $X ={\rm{ KF} } \times {C^{{N} } } + {\rm{XFIX} }$
    式中:X为吸附达到平衡时泥沙的吸附浓度,μg/g;KF和N为经验常数;C为溶液浓度,μg/L;XFIX为单位土壤吸附的化学物质质量,μg/g
    优点:模拟径流形成的详细过程,时间步长连续。缺点:不适用于数据缺乏导致模型参数不完整的研究区域
    AGNPS模型[43] $\begin{gathered} {\rm{Nu}}{{\rm{t}}_{ {\text{sed} } } } = {\rm{Nu}}{{\rm{t}}_{\text{f} } }{Q_{\text{s} } }(x){E_{\text{r} } } \\ {\rm{Nu}}{{\rm{t}}_{ {\text{sol} } } } = {C_{ {\text{nut} } } }{\rm{Nu}}{{\rm{t}}_{ {\text{ext} } } }Q \\ \end{gathered}$
    式中:Nutsed为氮、磷随泥沙迁移量,kg/hm2;Nutf为氮、磷在土壤中的含量,kg/hm2Qs(x)为土壤流失量,kg;Er为富集率;Nutsol为径流可溶性氮、磷浓度,mg/L;Cnut为表层土壤氮或磷的平均浓度,mg/kg;Nutext为土壤氮、磷的提取系数;Q为径流量,m3
    优点:模拟流域内侵蚀空间分布以及水质效果较好。缺点:模拟需要大量的输入参数,在缺乏数据的流域应用受到限制
    CREAMS模型[42] $\begin{array}{l}{\rm{RON} }={c}_{2}\times {e}_{2}\times Q\times 0.01\\ {\rm{SON} }={C}_{ {\rm{S} } }\times 富集比\times 产沙量\end{array}$
    式中:RON、SON为径流、泥沙吸附中氮通量,kg;c2为降水中的氮浓度,mg/L;e2为地表径流迁移系数;Q为径流量,m3/s;0.01为单位换算系数;CS为泥沙浓度,mg/L
    优点:适用于田块尺度的水文、侵蚀、污染物迁移转化模块计算。缺点:不能用于大规模流域,缺乏仿真功能
    SWMM(暴雨洪水管理模型)[48] $\begin{gathered} B = {C_1}(1 - {{\rm{e}}^{ - {C_2}t} }) \\ W = {C_{\text{3} } }{q^{ {C_4} } }B \\ \end{gathered}$
    式中:B为污染物累积质量,g/m2C1为污染物单位面积累积质量,g/m2C2为累积率常数,d-1W为每小时污染物冲刷质量,g/h;C3为冲刷系数;C4为冲刷指数;t为污染物累积时间,d
    优点:适用于小尺度、单次城市洪水事件。缺点:在短管较多、坡度较大、输出步长较短条件下,结果波动较大
    MIKE-SHE(地表水和地下水综合模拟软件)[49] $\dfrac{{\partial c}}{{\partial t}} = - \dfrac{\partial }{{\partial x}}(c{\nu _x}){\text{ + }}\dfrac{\partial }{{\partial y}}(c{\nu _y}) \pm R$
    式中:c为污染物浓度,mg/L;vx、vyxy方向水流流速,m/s;R为源汇入项
    优点:以网格为单位计算适合河网密集的平坦区水文过程。缺点:不公开源代码,无法进行二次开发
    下载: 导出CSV
  • [1] ZOU L L, LIU Y S, WANG Y S, et al. Assessment and analysis of agricultural non-point source pollution loads in China: 1978-2017[J]. Journal of Environmental Management,2020,263:110400. doi: 10.1016/j.jenvman.2020.110400
    [2] ZHANG W S, LI H P, PUEPPKE S G, et al. Nutrient loss is sensitive to land cover changes and slope gradients of agricultural hillsides: evidence from four contrasting pond systems in a hilly catchment[J]. Agricultural Water Management,2020,237:106165. doi: 10.1016/j.agwat.2020.106165
    [3] US EPA. Identifying and protecting healthy watersheds[R]. Washington DC: US EPA, 2012.
    [4] A blueprint to safeguard Europe's water resources[EB/OL]. [2022-10-10].https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0673.
    [5] 生态环境部. 第二次全国污染源普查公报[M]. 北京: 中国统计出版社, 2020.
    [6] 杨中文, 张萌, 郝彩莲, 等.基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J]. 环境科学研究,2020,33(11):2493-2506.

    YANG Z W, ZHANG M, HAO C L, et al. Source apportionment of total phosphorus pollution in Poyang Lake basin based on source-sink process modeling[J]. Research of Environmental Sciences,2020,33(11):2493-2506.
    [7] 薛雪, 毛宇鹏, 张洪. 珠三角典型区域农田小区尺度氮磷和镉砷输移特征与控制对策[J]. 环境工程技术学报, 2023, 13(3): 1179-1186 .

    XUE X, MAO Y P, ZHANG H. Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J]. Journal of Environmental Engineering Technology, 2023, 13(3): 1179-1186.
    [8] LI S S, LIU H B, ZHANG L, et al. Potential nutrient removal function of naturally existed ditches and ponds in paddy regions: prospect of enhancing water quality by irrigation and drainage management[J]. Science of the Total Environment,2020,718:137418. doi: 10.1016/j.scitotenv.2020.137418
    [9] SHEN W Z, LI S S, MI M H, et al. What makes ditches and ponds more efficient in nitrogen control[J]. Agriculture, Ecosystems & Environment,2021,314:107409.
    [10] HE Y P, ZHANG J Y, YANG S H, et al. Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization[J]. Agricultural Water Management,2019,221:231-237. doi: 10.1016/j.agwat.2019.03.043
    [11] HUA L L, ZHAI L M, LIU J, et al. Effect of irrigation-drainage unit on phosphorus interception in paddy field system[J]. Journal of Environmental Management,2019,235:319-327.
    [12] LI Y F, WRIGHT A, LIU H Y, et al. Land use pattern, irrigation, and fertilization effects of rice-wheat rotation on water quality of ponds by using self-organizing map in agricultural watersheds[J]. Agriculture, Ecosystems & Environment,2019,272:155-164.
    [13] SHEHAB Z N, JAMIL N R, ARIS A Z, et al. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia[J]. Ecological Indicators,2021,122:107254. doi: 10.1016/j.ecolind.2020.107254
    [14] LI L, GOU M M, WANG N, et al. Landscape configuration mediates hydrology and nonpoint source pollution under climate change and agricultural expansion[J]. Ecological Indicators,2021,129:107959. doi: 10.1016/j.ecolind.2021.107959
    [15] 贾晓波, 赵茜, 郝韵, 等.浑太河流域不同水生态功能区环境要素的分布特征及其与土地利用之间的关系[J]. 环境科学研究,2021,34(7):1542-1552.

    JIA X B, ZHAO Q, HAO Y, et al. Spatial distribution characteristics of environmental variables and response to land use patterns in different aquatic ecological functional regions of Hun-Tai River Basin[J]. Research of Environmental Sciences,2021,34(7):1542-1552.
    [16] XUE B L, ZHANG H W, WANG G Q, et al. Evaluating the risks of spatial and temporal changes in nonpoint source pollution in a Chinese River Basin[J]. Science of the Total Environment,2022,807:151726. doi: 10.1016/j.scitotenv.2021.151726
    [17] WU J G. Landscape sustainability science (Ⅱ): core questions and key approaches[J]. Landscape Ecology,2021,36(8):2453-2485. doi: 10.1007/s10980-021-01245-3
    [18] MULUALEM T, ADGO E, MESHESHA D T, et al. Exploring the variability of soil nutrient outflows as influenced by land use and management practices in contrasting agro-ecological environments[J]. Science of the Total Environment,2021,786:147450. doi: 10.1016/j.scitotenv.2021.147450
    [19] WU L, LI X P, MA X Y. Particulate nutrient loss from drylands to grasslands/forestlands in a large-scale highly erodible watershed[J]. Ecological Indicators,2019,107:105673. doi: 10.1016/j.ecolind.2019.105673
    [20] WANG T, ZHU B, ZHOU M H, et al. Nutrient loss from slope cropland to water in the riparian zone of the Three Gorges Reservoir: process, pathway, and flux[J]. Agriculture, Ecosystems & Environment,2020,302:107108.
    [21] WU L, YEN H, MA X Y. Effects of particulate fractions on critical slope and critical rainfall intensity for runoff phosphorus from bare loessial soil[J]. CATENA,2021,196:104935. doi: 10.1016/j.catena.2020.104935
    [22] PEI Y W, HUANG L M, LI D F, et al. Characteristics and controls of solute transport under different conditions of soil texture and vegetation type in the water-wind erosion crisscross region of China's Loess Plateau[J]. Chemosphere,2021,273:129651. doi: 10.1016/j.chemosphere.2021.129651
    [23] DU Y N, LI T Y, HE B H. Runoff-related nutrient loss affected by fertilization and cultivation in sloping croplands: an 11-year observation under natural rainfall[J]. Agriculture, Ecosystems & Environment,2021,319:107549.
    [24] OUYANG W, HAO X, WANG L, et al. Watershed diffuse pollution dynamics and response to land development assessment with riverine sediments[J]. Science of the Total Environment,2019,659:283-292. doi: 10.1016/j.scitotenv.2018.12.367
    [25] PINARDI M, SOANA E, SEVERINI E, et al. Agricultural practices regulate the seasonality of groundwater-river nitrogen exchanges[J]. Agricultural Water Management,2022,273:107904. doi: 10.1016/j.agwat.2022.107904
    [26] JIA Z, CHEN C, LUO W, et al. Hydraulic conditions affect pollutant removal efficiency in distributed ditches and ponds in agricultural landscapes[J]. Science of the Total Environment,2019,649:712-721. doi: 10.1016/j.scitotenv.2018.08.340
    [27] WANG S H, WANG Y Q, WANG Y J, et al. Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed[J]. Ecological Indicators,2022,141:109084. doi: 10.1016/j.ecolind.2022.109084
    [28] YI Q T, ZHANG Y, XIE K, et al. Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes[J]. Journal of Hydrology,2020,581:124439. doi: 10.1016/j.jhydrol.2019.124439
    [29] WANG M M, CHEN H S, ZHANG W, et al. Influencing factors on soil nutrients at different scales in a Karst area[J]. CATENA,2019,175:411-420. doi: 10.1016/j.catena.2018.12.040
    [30] 何卓识, 霍守亮, 马春子, 等.气候变化对小流域氮、磷通量的影响: 以延安市河流流域为例[J]. 环境工程技术学报,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025

    HE Z S, HUO S L, MA C Z, et al. Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in watersheds of Yan'an City[J]. Journal of Environmental Engineering Technology,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025
    [31] 陈晨, 徐威杰, 张彦, 等.独流减河流域绿色基础设施空间格局与景观连通性分析的尺度效应[J]. 环境科学研究,2019,32(9):1464-1474.

    CHEN C, XU W J, ZHANG Y, et al. Scale effect of the spatial pattern and connectivity analysis for the green infrastructure in Duliujian River Basin[J]. Research of Environmental Sciences,2019,32(9):1464-1474.
    [32] HOLLAWAY M J, BEVEN K J, BENSKIN C M H, et al. The challenges of modelling phosphorus in a headwater catchment: applying a ‘limits of acceptability’ uncertainty framework to a water quality model[J]. Journal of Hydrology,2018,558:607-624. doi: 10.1016/j.jhydrol.2018.01.063
    [33] DALY K, STYLES D, LALOR S, et al. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties[J]. European Journal of Soil Science,2015,66(4):792-801. doi: 10.1111/ejss.12260
    [34] LI Z W, TANG H W, XIAO Y, et al. Factors influencing phosphorus adsorption onto sediment in a dynamic environment[J]. Journal of Hydro-Environment Research,2016,10:1-11. doi: 10.1016/j.jher.2015.06.002
    [35] WALTER M T, GAO B, PARLANGE J Y. Modeling soil solute release into runoff with infiltration[J]. Journal of Hydrology,2007,347(3/4):430-437.
    [36] 王全九, 邵明安, 李占斌, 等.黄土区农田溶质径流过程模拟方法分析[J]. 水土保持研究,1999,6(2):67-71. doi: 10.3969/j.issn.1005-3409.1999.02.014

    WANG Q J, SHAO M A, LI Z B, et al. Analysis of simulating methods for soil solute transport with runoff in loess plateau[J]. Research of Soil and Water Conservation,1999,6(2):67-71. doi: 10.3969/j.issn.1005-3409.1999.02.014
    [37] YANG T, WANG Q J, WU L S, et al. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment[J]. Science of the Total Environment,2016,557/558:590-600. doi: 10.1016/j.scitotenv.2016.03.087
    [38] SHAO F F, TAO W H, WANG Q J, et al. A modified model for predicting nutrient loss in runoff using a time-varying mixing layer[J]. Journal of Hydrology,2021,603:127091. doi: 10.1016/j.jhydrol.2021.127091
    [39] SHEN Z Y, LIAO Q, HONG Q, et al. An overview of research on agricultural non-point source pollution modelling in China[J]. Separation and Purification Technology,2012,84:104-111. doi: 10.1016/j.seppur.2011.01.018
    [40] JOHNES P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach[J]. Journal of Hydrology,1996,183(3/4):323-349.
    [41] BEASLEY D B, HUGGINS L F, MONKE E J. ANSWERS: a model for watershed planning[J]. Transactions of the ASAE,1980,23(4):938-944. doi: 10.13031/2013.34692
    [42] SWEENEY D W, BOTTCHER A B, CAMPBELL K L, et al. Measured and creams-predicted nitrogen losses from tomato and corn management systems[J]. Journal of the American Water Resources Association,1985,21(5):867-873. doi: 10.1111/j.1752-1688.1985.tb00181.x
    [43] GUPTA A K, RUDRA R P, GHARABAGHI B, et al. CoBAGNPS: a toolbox for simulating water and sediment control basin, WASCoB through AGNPS model[J]. CATENA,2019,179:49-65. doi: 10.1016/j.catena.2019.02.003
    [44] SHI W H, HUANG M B. Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau[J]. International Soil and Water Conservation Research,2021,9(2):291-304. doi: 10.1016/j.iswcr.2020.12.002
    [45] LEE D H, KIM J H, PARK M H, et al. Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model[J]. Ecological Modelling,2020,415:108835. doi: 10.1016/j.ecolmodel.2019.108835
    [46] WANG W Z, CHEN L, SHEN Z Y. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution[J]. Science of the Total Environment,2020,747:141164. doi: 10.1016/j.scitotenv.2020.141164
    [47] 荣易, 秦成新, 孙傅, 等.SWAT模型在我国流域水环境模拟应用中的评估验证过程评价[J]. 环境科学研究,2020,33(11):2571-2580.

    RONG Y, QIN C X, SUN F, et al. Assessment of evaluation process of SWAT model application in China[J]. Research of Environmental Sciences,2020,33(11):2571-2580.
    [48] MOHAMMED M H, ZWAIN H M, HASSAN W H. Modeling the impacts of climate change and flooding on sanitary sewage system using SWMM simulation: a case study[J]. Results in Engineering,2021,12:100307. doi: 10.1016/j.rineng.2021.100307
    [49] CHI W Q, ZHANG X D, ZHANG W M, et al. Impact of tidally induced residual circulations on chemical oxygen demand (COD) distribution in Laizhou Bay, China[J]. Marine Pollution Bulletin,2020,151:110811. doi: 10.1016/j.marpolbul.2019.110811
    [50] GUZMAN J A, SHIRMOHAMMADI A, SADEGHI A M. Uncertainty considerations in calibration and validation of hydrologic and water quality models[J]. Transactions of the ASABE,2015,58(6):1745-1762. doi: 10.13031/trans.58.10710
    [51] KRUEGER T. Bayesian inference of uncertainty in freshwater quality caused by low-resolution monitoring[J]. Water Research,2017,115:138-148. doi: 10.1016/j.watres.2017.02.061
    [52] FU B, HORSBURGH J S, JAKEMAN A J, et al. Modeling water quality in watersheds: from here to the next generation[J/OL]. Water Resources Research, 2020, 56(11). https://doi.org/10.1029/2020WR027721.
    [53] 贺玉彬, 朱畅畅, 陈在妮, 等.大渡河流域径流预报不确定性溯源及降低控制方法[J]. 武汉大学学报(工学版),2021,54(1):65-71.

    HE Y B, ZHU C C, CHEN Z N, et al. Runoff forecasting uncertainty traceability analysis and control method research of Dadu River Basin[J]. Engineering Journal of Wuhan University,2021,54(1):65-71.
    [54] 孙晓卓, 曾献奎, 吴吉春, 等.一种改进的地下水模型结构不确定性分析方法[J]. 水文地质工程地质,2021,48(6):24-33.

    SUN X Z, ZENG X K, WU J C, et al. An improved method of groundwater model structural uncertainty analysis[J]. Hydrogeology & Engineering Geology,2021,48(6):24-33.
    [55] 张京, 马金锋, 马梅.流域水文模型不确定性研究进展[J]. 人民黄河,2022,44(7):30-36.

    ZHANG J, MA J F, MA M. Research progress on uncertainty of watershed hydrological model[J]. Yellow River,2022,44(7):30-36.
    [56] CHEN L, GONG Y W, SHEN Z Y. Structural uncertainty in watershed phosphorus modeling: toward a stochastic framework[J]. Journal of Hydrology,2016,537:36-44. doi: 10.1016/j.jhydrol.2016.03.039
    [57] FONSECA A, AMES D P, YANG P, et al. Watershed model parameter estimation and uncertainty in data-limited environments[J]. Environmental Modelling & Software,2014,51:84-93.
    [58] KOO H, CHEN M, JAKEMAN A J, et al. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: a holistic analysis applied to SWAT for input datasets and model parameters[J]. Environmental Modelling & Software,2020,127:104676.
    [59] LIU X P, LU M Z, CHAI Y Z, et al. A comprehensive framework for HSPF hydrological parameter sensitivity, optimization and uncertainty evaluation based on SVM surrogate model: a case study in Qinglong River watershed, China[J]. Environmental Modelling & Software,2021,143:105126. ◇
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  248
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 网络出版日期:  2023-07-19

目录

    /

    返回文章
    返回