留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北山地山口湖生态系统的营养结构和演变趋势

石展耀 张靖天 黄炜惠 翁南燕 张含笑 霍守亮

石展耀,张靖天,黄炜惠,等.东北山地山口湖生态系统的营养结构和演变趋势[J].环境工程技术学报,2023,13(3):1204-1213 doi: 10.12153/j.issn.1674-991X.20220533
引用本文: 石展耀,张靖天,黄炜惠,等.东北山地山口湖生态系统的营养结构和演变趋势[J].环境工程技术学报,2023,13(3):1204-1213 doi: 10.12153/j.issn.1674-991X.20220533
SHI Z Y,ZHANG J T,HUANG W H,et al.Trophic structure and evolution trend of Lake Shankou ecosystem, in northeast China[J].Journal of Environmental Engineering Technology,2023,13(3):1204-1213 doi: 10.12153/j.issn.1674-991X.20220533
Citation: SHI Z Y,ZHANG J T,HUANG W H,et al.Trophic structure and evolution trend of Lake Shankou ecosystem, in northeast China[J].Journal of Environmental Engineering Technology,2023,13(3):1204-1213 doi: 10.12153/j.issn.1674-991X.20220533

东北山地山口湖生态系统的营养结构和演变趋势

doi: 10.12153/j.issn.1674-991X.20220533
基金项目: 国家自然科学基金项目(51922010)
详细信息
    作者简介:

    石展耀(1998—),男,硕士研究生,主要从事水生态环境保护研究,zhany0115@gmail.com

    通讯作者:

    张靖天(1985—),男,高级工程师,硕士,主要从事流域水污染防治研究,wuxiang1998@163.com

  • 中图分类号: X171

Trophic structure and evolution trend of Lake Shankou ecosystem, in northeast China

  • 摘要:

    为探究东北山地湖泊山口湖生态系统的食物网结构并预测更合理的生态管理方式,结合多元逐步回归分析探索了理化因子对山口湖初级生产力的影响,使用Ecopath模型对2014年山口湖生态系统数据进行建模,并利用Ecosim模型分析不同情景下浮游生物和主要鱼类自2014年开始未来20年的变化趋势,结合相关性分析探究山口湖未来的管理方式。结果表明:山口湖是磷限制型湖泊,水温和总磷对初级生产力的增加有促进作用。山口湖生态系统生物之间捕食关系复杂,能量流动集中在第Ⅱ营养级以上,关键种为“其他鱼类”功能组,山口湖Ecopath模型的Pedigree指数为0.537,可信度较高。浮游植物的生产率(PD/B)增加显著促进了鲫、鲤和鲢相对生物量的增加,PD/B每年下降超过5%时对上述3种鱼类相对生物量的影响不显著,鲢搜索率的增加会提高鲢对桡足类、枝角类和轮虫等浮游动物的捕食效率,通过营养级间联合作用导致浮游植物的相对生物量略微上升。结合情景分析和相关性分析发现,增加浮游植物的生物量会提高渔业产量,山口湖生态系统中鲢控藻效果不佳,要加强对外源营养盐的限制。

     

  • 图  1  山口湖采样点位分布

    Figure  1.  Sampling sites in Lake Shankou

    图  2  山口湖食物网结构

    注:圆的面积代表B的大小,黑线代表营养级为1、2、3时的位置,绿线代表功能组间能量流动,红线代表捕捞。

    Figure  2.  Food web structure in Lake Shankou

    图  3  山口湖功能组相互影响

    Figure  3.  Mixed trophic impact diagram in Lake Shankou

    图  4  山口湖关键种指数

    注:圆的大小和颜色分别代表每个功能组生物量和营养级。

    Figure  4.  Keystone species index in Lake Shankou

    图  5  山口湖中浮游植物对主要鱼类的上行效应

    Figure  5.  Bottom-up effects of phytoplankton on main fish in Lake Shankou

    图  6  山口湖中鲢对浮游生物的下行效应

    Figure  6.  Up-down effects of silver carp on plankton in Lake Shankou

    表  1  山口湖Ecopath模型功能组输入与输出参数

    Table  1.   Input and output parameters of the Ecopath model in Lake Shankou

    功能组营养级B/(t/km2)(PD/B)/a−1(Q/B)/a−1EEPD/Q
    其他鱼类2.7940.4761.00010.0000.9970.100
    3.3590.5950.4902.9000.7730.169
    密苏里白鲑2.5570.2390.6904.1000.9500.168
    哲罗鱼3.5990.1500.5003.1000.6350.161
    狗鱼3.4480.3810.5002.9000.7430.172
    草鱼2.0000.3270.6305.2000.8620.121
    2.2600.9521.27012.0000.9520.106
    2.5330.8930.81011.6000.8630.070
    2.4765.0001.1705.4000.7830.217
    底栖动物2.1430.5714.030201.7000.7790.020
    原生动物2.0000.151150.000500.0000.8560.300
    轮虫2.1250.25150.000200.0000.9380.250
    枝角类2.0354.36925.000457.0000.9560.055
    桡足类2.0554.36725.000378.0000.7780.066
    水生植物1.0003.5981.2500.730
    浮游植物1.00016.100208.1260.550
    碎屑1.00010.0000.500
    下载: 导出CSV

    表  2  环境因子对Chla影响Spearman相关性分析

    Table  2.   Spearman correlation analysis of environmental factors on Chla

    变量TPTNN∶PTDOCODCr
    ChlaR0.1629−0.0736−0.21400.5597−0.20760.1574
    PR0.0036**0.19120.0001***<0.0001***0.0002***0.005 0**
      注:样本量为37;**指在0.01水平下相关性显著,***指在0.001水平下相关性显著。
    下载: 导出CSV

    表  3  山口湖生态系统指标统计

    Table  3.   Ecosystem indexes statistics of Lake Shankou

    参数数值
    总消费量/〔t/(km2·a)〕3 947.750
    总输出量/〔t/(km2·a)〕1 171.706
    总呼吸流量/〔t/(km2·a)〕2 893.112
    流向碎屑总流量/〔t/(km2·a)〕2 333.819
    系统总流量(TST)/〔t/(km2·a)〕10 346.390
    总生产量/〔t/(km2·a)〕3 620.417
    净初级生产量/〔t/(km2·a)〕3 355.330
    系统净生产量/〔t/(km2·a)〕462.217
    总捕捞量/〔t/(km2·a)〕3.754
    总生物量(除去碎屑)/(t/km2)38.421
    总初级生产量/总呼吸量(TPP/TR)1.160
    总初级生产/总生物量87.331
    连接指数(CI)0.290
    系统杂食性指数(SOI)0.189
    Pedigree指数0.537
    下载: 导出CSV

    表  4  山口湖能量传递效率统计

    Table  4.   Statistics of energy transfer efficiency in Lake Shankou % 

    能量来源各营养级的能量传递效率Ⅱ~Ⅳ级的
    几何平均值
    生产者1.198.519.2910.379.404.45
    碎屑1.178.978.4110.639.384.54
    总体1.188.698.9310.479.394.51
    下载: 导出CSV
  • [1] PIKITCH E K, SANTORA C, BABCOCK E A, et al. Ecosystem-based fishery management[J]. Science,2004,305(5682):346-347. doi: 10.1126/science.1098222
    [2] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: phosphorus and nitrogen[J]. Science,2009,323:1014-1015. doi: 10.1126/science.1167755
    [3] 郭云艳, 周光鑫, 王雅雯, 等.南湖水系表层沉积物有机质的赋存特征、来源及生物有效性[J]. 环境工程技术学报,2020,10(6):936-943.

    GUO Y Y, ZHOU G X, WANG Y W, et al. Occurrence characteristics, sources and bioavailability of organic matter in surface sediments of Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):936-943.
    [4] 李青倩, 袁鹏, 杨鹊平, 等.长江水系氮磷生态化学计量学空间变化特征及影响因素[J]. 环境工程技术学报,2022,12(2):573-580.

    LI Q Q, YUAN P, YANG Q P, et al. Spatial variation characteristics and influencing factors of nitrogen and phosphorus ecological stoichiometry in the Yangtze River system[J]. Journal of Environmental Engineering Technology,2022,12(2):573-580.
    [5] 王书航, 郑朔方, 蔡青, 等.南湖及周边水体中氮的时空分布、影响因素及控制对策[J]. 环境工程技术学报,2020,10(6):920-927. doi: 10.12153/j.issn.1674-991X.20200070

    WANG S H, ZHENG S F, CAI Q, et al. Spatio-temporal distribution, influencing factors and control strategies of nitrogen of Nanhu Lake and its surrounding rivers[J]. Journal of Environmental Engineering Technology,2020,10(6):920-927. doi: 10.12153/j.issn.1674-991X.20200070
    [6] ROBINSON K F, ALSIP P J, DRAKE A R, et al. Reviewing uncertainty in bioenergetics and food web models to project invasion impacts: four major Chinese carps in the Great Lakes[J]. Journal of Great Lakes Research,2021,47(1):83-95. doi: 10.1016/j.jglr.2020.11.003
    [7] 仝龄.Ecopath: 一种生态系统能量平衡评估模式[J]. 海洋水产研究,1999,20(2):103-107.

    TONG L. Ecopath model: a mass-balance modeling for ecosystem estimation[J]. Marine Fisherries Reseach,1999,20(2):103-107.
    [8] LIU Q G, CHEN Y, LI J L, et al. The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem[J]. Ecological Modelling,2007,203(3/4):279-289.
    [9] WANG S C, LIU X Q, LIU Y, et al. Benthic-pelagic coupling in lake energetic food webs[J]. Ecological Modelling,2020,417:108928. doi: 10.1016/j.ecolmodel.2019.108928
    [10] GUO C B, CHEN Y S, LI W, et al. Food web structure and ecosystem properties of the largest impounded lake along the eastern route of China's South-to-North Water Diversion Project[J]. Ecological Informatics,2018,43:174-184. doi: 10.1016/j.ecoinf.2017.12.003
    [11] ZENG Y, ZHAO Y W, QI Z F. Evaluating the ecological state of Chinese Lake Baiyangdian (BYD) based on Ecological Network Analysis[J]. Ecological Indicators,2021,127:107788. doi: 10.1016/j.ecolind.2021.107788
    [12] LASSALLE G, LOBRY J, LOC’H F L, et al. Lower trophic levels and detrital biomass control the Bay of Biscay continental shelf food web: implications for ecosystem management[J]. Progress in Oceanography,2011,91(4):561-575. doi: 10.1016/j.pocean.2011.09.002
    [13] 邓悦, 郑一琛, 常剑波.利用Ecopath模型评价鲢鳙放养对千岛湖生态系统的影响[J]. 生态学报,2022,42(16):1-10.

    DENG Y, ZHENG Y C, CHANG J B, et al. Evaluation of the effect of tocking silver carp and bighead carp on the ecosystem of Qiandao Lake using Ecopath model[J]. Acta Ecologica Sinica,2022,42(16):1-10.
    [14] 韩成伟. 寒冷地区非点源氮磷环境行为与模拟预测研究[D]. 大连: 大连理工大学, 2012.
    [15] 刘丽娜, 马春子, 张靖天, 等.东北湖区典型流域生态安全评估[J]. 环境科学研究,2019,32(7):1108-1116. doi: 10.13198/j.issn.1001-6929.2018.11.23

    LIU L N, MA C Z, ZHANG J T, et al. Ecological security assessment of typical watershed in northeast China[J]. Research of Environmental Sciences,2019,32(7):1108-1116. doi: 10.13198/j.issn.1001-6929.2018.11.23
    [16] ROBSON B J, LESTER R E, BALDWIN D S, et al. Modelling food-web mediated effects of hydrological variability and environmental flows[J]. Water Research,2017,124:108-128. doi: 10.1016/j.watres.2017.07.031
    [17] 李昌, 张新, 赵龙, 等.基于Ecopath模型的密云水库生态系统结构与物质流动特征[J]. 生物资源,2021,43(3):292-302.

    LI C, ZHANG X, ZHAO L, et al. Ecosystem structure and material flows of Miyun Reservoir based on the Ecopath model[J]. Biotic Resources,2021,43(3):292-302.
    [18] CREMONA F, JÄRVALT A, BHELE U, et al. Relationships between fisheries, foodweb structure, and detrital pathway in a large shallow lake[J]. Hydrobiologia,2018,820(1):145-163. doi: 10.1007/s10750-018-3648-2
    [19] 宋兵. 太湖渔业和环境的生态系统模型研究[D]. 上海: 华东师范大学, 2004.
    [20] LI C H, XIAN Y, YE C, et al. Wetland ecosystem status and restoration using the Ecopath with Ecosim (EWE) model[J]. Science of the Total Environment,2019,658:305-314. doi: 10.1016/j.scitotenv.2018.12.128
    [21] KAO Y C, ADLERSTEIN S, RUTHERFORD E. The relative impacts of nutrient loads and invasive species on a Great Lakes food web: an Ecopath with Ecosim analysis[J]. Journal of Great Lakes Research,2014,40:35-52.
    [22] PALOMARES M L D, PAULY D. Predicting food consumption of fish populations[J]. Marine Freshwater Resource,1998,49(3):447-453.
    [23] HOSSAIN M M, MATSUISHI T, ARHONDITSIS G. Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)[J]. Ecological Modelling,2010,221(13):1717-30.
    [24] WALTERS C, CHRISTENSEN V, PAULY D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments[J]. Reviews in Fish Biology and Fisheries,1997,7:139-172. doi: 10.1023/A:1018479526149
    [25] CHRISTENSEN V, WALTERS C J. Ecopath with Ecosim: methods, capabilities and limitations[J]. Ecological Modelling,2004,172(2/3/4):109-139.
    [26] NATUGONZA V, AINSWORTH C, STURLUDÓTTIR E, et al. Ecosystem modelling of data-limited fisheries: how reliable are Ecopath with Ecosim models without historical time series fitting?[J]. Journal of Great Lakes Research,2020,46(2):414-428. doi: 10.1016/j.jglr.2020.01.001
    [27] 牛晓君.富营养化发生机理及水华暴发研究进展[J]. 四川环境,2006,25(3):73-76. doi: 10.14034/j.cnki.schj.2006.03.017

    NIU X J. Research progress of eutrophication mechanism and breakout of water bloom[J]. Sichuan Environment,2006,25(3):73-76. doi: 10.14034/j.cnki.schj.2006.03.017
    [28] 梅雪英, Vladimir Razlutskij, Lars G.Rudstam, 等. 杂食性鱼类对浅水水体底栖-浮游生境耦合作用的影响: 微综述[J]. 湖泊科学,2021,33(3):667-674. doi: 10.18307/2021.0304

    MEI X Y, RAZLUTSKIJ V, RUDSTAM L, et al. Effects of omnivorous fish on benthic-pelagic habitats coupling in shallow aquatic ecosystems: a minireview[J]. Journal of Lake Sciences,2021,33(3):667-674. doi: 10.18307/2021.0304
    [29] COLL M, SANTOJANNI A, PALOMERA I, et al. An ecological model of the Northern and Central Adriatic Sea: analysis of ecosystem structure and fishing impacts[J]. Journal of Marine Systems,2007,67(1/2):119-154.
    [30] DUAN L J, LI S Y, LIU Y, et al. Modeling changes in the coastal ecosystem of the Pearl River Estuary from 1981 to 1998[J]. Ecological Modelling,2009,220(20):2802-2818. doi: 10.1016/j.ecolmodel.2009.07.016
    [31] FETAHI T, SCHAGERL M, MENGISTOU S, et al. Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia[J]. Ecological Modelling,2011,222(3):804-813. doi: 10.1016/j.ecolmodel.2010.09.038
    [32] MORISSETTE L, PEDERSEN T, NILSEN M. Comparing pristine and depleted ecosystems: the Sørfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems[J]. Progress in Oceanography,2009,81(1/2/3/4):174-187.
    [33] MUKHERJEE J, KARAN S, CHAKRABARTY M, et al. An approach towards quantification of ecosystem trophic status and health through ecological network analysis applied in Hooghly-Matla estuarine system, India[J]. Ecological Indicators,2019,100:55-68. doi: 10.1016/j.ecolind.2018.08.025
    [34] ODUM E P. The strategy of ecosystem development[J]. Science,1969,164(3877):262-270. doi: 10.1126/science.164.3877.262
    [35] LI Y K, CHEN Y, SONG B, et al. Ecosystem structure and functioning of Lake Taihu (China) and the impacts of fishing[J]. Fisheries Research,2009,95(2/3):309-324.
    [36] PAULY D, CHRISTENSEN V, WALTERS C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES Journal of Marine Science,2000,57(3):697-706. doi: 10.1006/jmsc.2000.0726
    [37] COLLÉTER M, VALLS A, GUITTON J, et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository[J]. Ecological Modelling,2015,302:42-53. doi: 10.1016/j.ecolmodel.2015.01.025
    [38] PAINE R T. A note on trophic complexity and community stability[J]. The American Naturalist,1969,103(929):91-93. doi: 10.1086/282586
    [39] SU G H, LOGEZ M, XU J, et al. Human impacts on global freshwater fish biodiversity[J]. Science,2021,371(6531):835-838. doi: 10.1126/science.abd3369
    [40] CREMER M C, SMITHERMAN R O. Food habits and growth of silver and bighead carp in cages and ponds[J]. Aquaculture,1980,20(1):57-64. doi: 10.1016/0044-8486(80)90061-7
    [41] SPATARU P, GOPHEN M. Food composition of the barbel Tor Canis (Cyprinidae) and its role in the Lake Kinneret ecosystem[J]. Environmental Biology of Fishes,1985,14(4):295-301. doi: 10.1007/BF00002634
    [42] YIN C J, HE W C, GUO L G, et al. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes?[J]. Water Research,2022,218:118483. ⊕ doi: 10.1016/j.watres.2022.118483
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  112
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 录用日期:  2022-08-23
  • 修回日期:  2022-08-09
  • 网络出版日期:  2022-09-22

目录

    /

    返回文章
    返回