留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BDE-209对斑马鱼肠道的慢性毒性效应

王京 闫振广 张天旭 王晶 李娟英

王京,闫振广,张天旭,等.BDE-209对斑马鱼肠道的慢性毒性效应[J].环境工程技术学报,2023,13(1):413-422 doi: 10.12153/j.issn.1674-991X.20210869
引用本文: 王京,闫振广,张天旭,等.BDE-209对斑马鱼肠道的慢性毒性效应[J].环境工程技术学报,2023,13(1):413-422 doi: 10.12153/j.issn.1674-991X.20210869
WANG J,YAN Z G,ZHANG T X,et al.Chronic toxic effects of BDE-209 on the intestinal tract of zebrafish (Danio Rerio)[J].Journal of Environmental Engineering Technology,2023,13(1):413-422 doi: 10.12153/j.issn.1674-991X.20210869
Citation: WANG J,YAN Z G,ZHANG T X,et al.Chronic toxic effects of BDE-209 on the intestinal tract of zebrafish (Danio Rerio)[J].Journal of Environmental Engineering Technology,2023,13(1):413-422 doi: 10.12153/j.issn.1674-991X.20210869

BDE-209对斑马鱼肠道的慢性毒性效应

doi: 10.12153/j.issn.1674-991X.20210869
基金项目: 国家自然科学基金项目(41991315)
详细信息
    作者简介:

    王京(1995—),男,硕士研究生,研究方向为健康风险及污染物分子毒理机制,steviewang123@163.com

    通讯作者:

    李娟英(1978—),女,教授,博士,研究方向为环境中有毒有害物质的迁移转化及环境毒理,jyli@shou.edu.cn

  • 中图分类号: X171.5

Chronic toxic effects of BDE-209 on the intestinal tract of zebrafish (Danio Rerio)

  • 摘要:

    以模式生物斑马鱼为研究对象,探究十溴联苯醚(BDE-209)慢性暴露对肠道组织的毒性效应及分子机制。将斑马鱼暴露于不同浓度的BDE-209〔6、60和600 μg/L,二甲基亚砜溶剂对照〕溶液中28 d,利用苏木精-伊红染色对斑马鱼肠道组织进行病理学检查,并通过生物化学指标和ELISA试验对肠道内氧化应激和炎症反应相关生物标志物含量进行分析,通过实时荧光定量 PCR 分析肠道屏障、炎症反应和细胞凋亡相关基因的相对表达量。结果表明:BDE-209暴露造成了斑马鱼肠壁变薄、肠绒毛和肠壁外纵肌内空泡化增多以及肠壁和肠绒毛纤毛破损,同时通过下调肠道内ZO-1、Claudin-2和Tjp2a的mRNA相对表达量影响了肠道的物理屏障功能。BDE-209暴露导致肠道内活性氧、丙二醛、过氧化氢酶和超氧化物歧化酶的含量增加,表明BDE-209暴露造成了肠道内氧化应激。此外,BDE-209暴露导致促炎细胞因子肿瘤坏死因子α和白细胞介素1β的含量以及肠道内脂多糖含量升高,加重了肠道的炎症反应,并导致p53、BaxCaspase3基因表达上调和Bcl2基因表达下调,促进了斑马鱼肠道的细胞凋亡。

     

  • 图  1  斑马鱼肠道切片苏木精-伊红 (H & E) 染色后的组织形态

    注:红色箭头标注的为肠壁;蓝色箭头标注的为肠道出现空泡化现象;绿色箭头标注的为肠绒毛出现破损现象。

    Figure  1.  Tissue morphology after haematoxylin-eosin (H & E) staining in intestinal sections from zebrafish

    图  2  BDE-209暴露后斑马鱼肠道内ROS、MDA、SOD和CAT含量变化

    注:*表示P< 0.05;**表示P< 0.01;***表示P< 0.001。

    Figure  2.  Changes of ROS, MDA, SOD and CAT contents in the intestine of zebrafish after exposure to BDE-209

    图  3  BDE-209暴露后斑马鱼肠道内TNF-α、IL-1β和LPS含量变化

    注:*表示P < 0.05;**表示P< 0.01;***表示P< 0.001。

    Figure  3.  Changes of TNF-α, IL-1β and LPS contents in the intestine of zebrafish after exposure to BDE-209

    图  4  BDE-209暴露后斑马鱼肠道内屏障功能、炎症通路和细胞凋亡相关基因表达量的变化

    注:*表示P< 0.05;**表示P< 0.01。

    Figure  4.  Expression changes of genes related to barrier function, inflammatory pathway and apoptosis in the intestine of zebrafish after exposure to BDE-209

    表  1  实时荧光定量PCR分析中使用的目标基因引物的序列

    Table  1.   The sequences of target genes primer pairs used in the RT-qPCR analysis

    基因名称引物序列(5’-3’)序列注册号
    Rpl8前置引物:
    AACAGAGCCGTTGTTGGTGTT
    后置引物:
    GAAGGGATGCTCAACAGGGTT
    NM_200713.1
    ZO-1前置引物:
    GAAAGCTCCCGCTCCATAGAA
    后置引物:
    ATCTACATCGGGTTGCCCAG
    XM_009303250.3
    Claudin-2前置引物:
    TATCGTTGATTCCCGTCGCC
    后置引物:
    TCATCGCAACAGGATGCACT
    NM_001004559.2
    Tjp2前置引物:
    AACGGCAGTTTCTGTGTAGA
    后置引物:
    ATCTTGGAGTCCCGCTGTA
    NM_001201570.1
    Muc2.1前置引物:
    CCCGTCCATGTGTCAGGAAT
    后置引物:
    TGAGTCCAGTTCCACCATGAC
    XM_021470771.1
    Akt2前置引物:
    CACAAAGTCCCGCACCAAAG
    后置引物:
    GTGCAACTTCGTCCTTAGCG
    NM_198146.2
    Tlr-4前置引物:
    CACATGCGGGACTTTCAAGC
    后置引物:
    TGTTGGCATTGCGTTCCATC
    NM_001131051.1
    Nfkb2前置引物:
    GCTGGAGCACTAAGGATGGA
    后置引物:
    GCACAAAGGGCTCATGCTTC
    NM_001001840.3
    IL-10前置引物:
    GACCATTCTGCCAACAGCTC
    后置引物:
    GACCCCCTTTTCCTTCATCTTT
    NM_001020785.2
    p53前置引物:
    TACTTGCCGGGATCGTTTGA
    后置引物:
    CAGGTCCGGTGAATAAGTGC
    NM_001271820.1
    Bcl2前置引物:
    AAATGGAGGTTGGGATGCCT
    后置引物:
    AAAAGGCTCCGATGGTCACT
    NM_001030253.2
    Bax前置引物:
    GCCCGTGAGATCTTCTCTGA
    后置引物:
    CCCTGGTTGAAATAGCCTTGA
    NM_131562.2
    Caspase3前置引物:
    CGTGTGGATACAACAGATGCTA
    后置引物:
    CCTGTCCTGCGATCAAAGTT
    NM_131877.3
    下载: 导出CSV
  • [1] AKORTIA E, OKONKWO J O, LUPANKWA M, et al. A review of sources, levels, and toxicity of polybrominated diphenyl ethers (PBDEs) and their transformation and transport in various environmental compartments[J]. Environmental Reviews,2016,24(3):253-273. doi: 10.1139/er-2015-0081
    [2] SHAOYONG W K, ZHANG W R, WANG C Y, et al. BDE-209 caused gut toxicity through modulating the intestinal barrier, oxidative stress, autophagy, inflammation, and apoptosis in mice[J]. Science of the Total Environment,2021,776:146018. doi: 10.1016/j.scitotenv.2021.146018
    [3] WANG J, YAN Z G, ZHENG X, et al. Health risk assessment and development of human health ambient water quality criteria for PBDEs in China[J]. Science of the Total Environment,2021,799:149353. doi: 10.1016/j.scitotenv.2021.149353
    [4] WU Z N, HAN W, YANG X, et al. The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air[J]. Environmental Science and Pollution Research International,2019,26(23):23219-23241. doi: 10.1007/s11356-019-05768-w
    [5] SHARKEY M, HARRAD S, ABOU-ELWAFA ABDALLAH M, et al. Phasing-out of legacy brominated flame retardants: the UNEP Stockholm Convention and other legislative action worldwide[J]. Environment International,2020,144:106041. doi: 10.1016/j.envint.2020.106041
    [6] YANG M, QI H, JIA H L, et al. Polybrominated diphenyl ethers in air across China: levels, compositions, and gas-particle partitioning[J]. Environmental Science & Technology,2013,47(15):8978-8984.
    [7] MADDELA N R, VENKATESWARLU K, KAKARLA D, et al. Inevitable human exposure to emissions of polybrominated diphenyl ethers: a perspective on potential health risks[J]. Environmental Pollution,2020,266:115240. doi: 10.1016/j.envpol.2020.115240
    [8] WU Z N, HE C, HAN W, et al. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: a review[J]. Environmental Research,2020,187:109531. doi: 10.1016/j.envres.2020.109531
    [9] GIBSON E A, SIEGEL E L, ENIOLA F, et al. Effects of polybrominated diphenyl ethers on child cognitive, behavioral, and motor development[J]. International Journal of Environmental Research and Public Health,2018,15(8):1636. doi: 10.3390/ijerph15081636
    [10] MAKEY C M, MCCLEAN M D, BRAVERMAN L E, et al. Polybrominated diphenyl ether exposure and reproductive hormones in North American men[J]. Reproductive Toxicology,2016,62:46-52. doi: 10.1016/j.reprotox.2016.04.009
    [11] CARY T L, ORTIZ-SANTALIESTRA M E, KARASOV W H. Immunomodulation in post-metamorphic northern leopard frogs, Lithobates pipiens, following larval exposure to polybrominated diphenyl ether[J]. Environmental Science & Technology,2014,48(10):5910-5919.
    [12] PEREIRA L C, CABRAL MIRANDA L F, FRANCO-BERNARDES M F, et al. Mitochondrial damage and apoptosis: key features in BDE-153-induced hepatotoxicity[J]. Chemico-Biological Interactions,2018,291:192-201. doi: 10.1016/j.cbi.2018.06.021
    [13] NOYES P D, HAGGARD D E, GONNERMAN G D, et al. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants[J]. Toxicological Sciences:an Official Journal of the Society of Toxicology,2015,145(1):177-195. doi: 10.1093/toxsci/kfv044
    [14] ZHU Y P, LI X Y, LIU J H, et al. The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice[J]. Chemosphere,2019,222:849-855. doi: 10.1016/j.chemosphere.2019.02.003
    [15] LI C Y, DEMPSEY J L, WANG D, et al. PBDEs altered gut microbiome and bile acid homeostasis in male C57BL/6 mice[J]. Drug Metabolism and Disposition:the Biological Fate of Chemicals,2018,46(8):1226-1240. doi: 10.1124/dmd.118.081547
    [16] SECOMBE K R, COLLER J K, GIBSON R J, et al. The bidirectional interaction of the gut microbiome and the innate immune system: implications for chemotherapy‐induced gastrointestinal toxicity[J]. International Journal of Cancer,2019,144(10):2365-2376. doi: 10.1002/ijc.31836
    [17] GUO P, WU C M. Gut microbiota brings a novel way to illuminate mechanisms of natural products in vivo[J]. Chinese Herbal Medicines,2017,9(4):301-306. doi: 10.1016/S1674-6384(17)60109-6
    [18] GONG X, LI X, BO A, et al. The interactions between gut microbiota and bioactive ingredients of traditional Chinese medicines: a review[J]. Pharmacological Research,2020,157:104824. doi: 10.1016/j.phrs.2020.104824
    [19] CHEN L G, HU C Y, LOK-SHUN LAI N, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish[J]. Environmental Pollution,2018,240:17-26. doi: 10.1016/j.envpol.2018.04.062
    [20] LUO T, WANG X Y, JIN Y X. Low concentrations of imidacloprid exposure induced gut toxicity in adult zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2021,241:108972.
    [21] 廖伟, 刘大庆, 冯承莲, 等.不同生长阶段斑马鱼对Cu2+的毒性响应差异[J]. 环境科学研究,2020,33(3):626-633.

    LIAO W, LIU D Q, FENG C L, et al. Difference in toxicity response of zebrafish to Cu2+ at different life stages[J]. Research of Environmental Sciences,2020,33(3):626-633.
    [22] BRUGMAN S. The zebrafish as a model to study intestinal inflammation[J]. Developmental & Comparative Immunology,2016,64:82-92.
    [23] 宋志慧, 孙欣欣, 李捍东.斑马鱼对3种氯酚的富集作用及其SOD酶活性应激反应研究[J]. 环境工程技术学报,2014,4(4):287-292. doi: 10.3969/j.issn.1674-991X.2014.04.047

    SONG Z H, SUN X X, LI H D. Study on bioconcentration of three chlorophenols in zebrafish and SOD activity stress action[J]. Journal of Environmental Engineering Technology,2014,4(4):287-292. doi: 10.3969/j.issn.1674-991X.2014.04.047
    [24] CHEN Q, YU L Q, YANG L H, et al. Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae[J]. Aquatic Toxicology,2012,110/111:141-148. doi: 10.1016/j.aquatox.2012.01.008
    [25] LI W, ZHU L F, ZHA J M, et al. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus)[J]. Environmental Toxicology,2014,29(1):1-9. doi: 10.1002/tox.20767
    [26] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods,2001,25(4):402-408. doi: 10.1006/meth.2001.1262
    [27] ABBASI G, LI L, BREIVIK K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology,2019,53(11):6330-6340.
    [28] JING L, SUN Y M, WANG Y W, et al. Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats[J]. Chemosphere,2019,223:675-685. doi: 10.1016/j.chemosphere.2019.02.115
    [29] HAN Z H, LI Y F, ZHANG S H, et al. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring[J]. Aquatic Toxicology,2017,190:46-52. doi: 10.1016/j.aquatox.2017.06.020
    [30] LIANG R Y, CHEN J, SHI Y J, et al. Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point[J]. Environmental Pollution,2018,240:653-660. doi: 10.1016/j.envpol.2018.04.145
    [31] NIKLASSON L, SUNDH H, FRIDELL F, et al. Disturbance of the intestinal mucosal immune system of farmed Atlantic salmon (Salmo salar), in response to long-term hypoxic conditions[J]. Fish & Shellfish Immunology,2011,31(6):1072-1080.
    [32] CHANG X L, LI H, FENG J C, et al. Effects of cadmium exposure on the composition and diversity of the intestinal microbial community of common carp (Cyprinus carpio L.)[J]. Ecotoxicology and Environmental Safety,2019,171:92-98. doi: 10.1016/j.ecoenv.2018.12.066
    [33] CHANG X L, WANG X F, FENG J C, et al. Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.)[J]. Environmental Pollution,2020,259:113846. doi: 10.1016/j.envpol.2019.113846
    [34] WANG Y H, WANG B B, WANG Q Q, et al. Intestinal toxicity and microbial community disorder induced by bisphenol F and bisphenol S in zebrafish[J]. Chemosphere,2021,280:130711. doi: 10.1016/j.chemosphere.2021.130711
    [35] SUN Y C, ZHANG J, SONG W T, et al. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats[J]. Environmental Science and Pollution Research International,2018,25(26):26682-26692. doi: 10.1007/s11356-018-2666-y
    [36] YU G J, OU W H, LIAO Z B, et al. Intestinal homeostasis of juvenile tiger puffer Takifugu rubripes was sensitive to dietary arachidonic acid in terms of mucosal barrier and microbiota[J]. Aquaculture,2019,502:97-106. doi: 10.1016/j.aquaculture.2018.12.020
    [37] DING Z L, KONG Y Q, SHAO X P, et al. Growth, antioxidant capacity, intestinal morphology, and metabolomic responses of juvenile Oriental River prawn (Macrobrachium nipponense) to chronic lead exposure[J]. Chemosphere,2019,217:289-297. doi: 10.1016/j.chemosphere.2018.11.034
    [38] YI H, ZHANG L, GAN Z, et al. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine[J]. Scientific Reports,2016,6:25679. doi: 10.1038/srep25679
    [39] CAPALDO C T, POWELL D N, KALMAN D. Layered defense: how mucus and tight junctions seal the intestinal barrier[J]. Journal of Molecular Medicine (Berlin, Germany),2017,95(9):927-934. doi: 10.1007/s00109-017-1557-x
    [40] 曾晨, 郭少娟, 杨立新.汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报,2018,8(2):221-230. doi: 10.3969/j.issn.1674-991X.2018.02.030

    ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology,2018,8(2):221-230. doi: 10.3969/j.issn.1674-991X.2018.02.030
    [41] WANG W T, ZHAO X S, REN X, et al. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): oxidative stress, apoptosis and DNA damage[J]. Aquatic Toxicology,2020,225:105546. doi: 10.1016/j.aquatox.2020.105546
    [42] ZHANG J W, ZHANG C, DU Z K, et al. Emerging contaminant 1, 3, 6, 8-tetrabromocarbazole induces oxidative damage and apoptosis during the embryonic development of zebrafish (Danio rerio)[J]. Science of the Total Environment,2020,743:140753. doi: 10.1016/j.scitotenv.2020.140753
    [43] 郭少娟, 张元元, 王菲菲, 等.大气颗粒物对斑马鱼胚胎的毒性及机制研究进展[J]. 环境工程技术学报,2020,10(3):338-345. doi: 10.12153/j.issn.1674-991X.20190155

    GUO S J, ZHANG Y Y, WANG F F, et al. A review of toxicity and mechanism of atmospheric particulate matter on zebrafish embryos[J]. Journal of Environmental Engineering Technology,2020,10(3):338-345. doi: 10.12153/j.issn.1674-991X.20190155
    [44] 焦周光, 胡凌飞, 李娜, 等.大气PM2.5对大鼠心肌细胞的毒性作用[J]. 环境科学研究,2018,31(9):1636-1644.

    JIAO Z G, HU L F, LI N, et al. Toxic effects on rat cardiac myocytes from atmospheric PM2.5 particles[J]. Research of Environmental Sciences,2018,31(9):1636-1644.
    [45] COSTA L G, GIORDANO G. Is decabromodiphenyl ether (BDE-209) a developmental neurotoxicant[J]. NeuroToxicology,2011,32(1):9-24. doi: 10.1016/j.neuro.2010.12.010
    [46] CHAO S J, HUANG C P, CHEN P C, et al. Uptake of BDE-209 on zebrafish embryos as affected by SiO2 nanoparticles[J]. Chemosphere,2018,205:570-578. doi: 10.1016/j.chemosphere.2018.04.075
    [47] RAJPUT I R, YAQOOB S, SUN Y J, et al. Polybrominated diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell lines[J]. Environmental Pollution,2021,271:116131. doi: 10.1016/j.envpol.2020.116131
    [48] VALAVANIDIS A, VLAHOGIANNI T, DASSENAKIS M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicology and Environmental Safety,2006,64(2):178-189. doi: 10.1016/j.ecoenv.2005.03.013
    [49] ZHANG T X, YAN Z G, ZHENG X, et al. Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea)[J]. Fish & Shellfish Immunology,2020,99:514-525.
    [50] MENG S L, CHEN X, GYIMAH E, et al. Hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish following sub-chronic exposure to BDE-47 and BDE-153[J]. Environmental Toxicology,2020,35(11):1202-1211. doi: 10.1002/tox.22985
    [51] MAO X B, YANG Q, CHEN D W, et al. Benzoic acid used as food and feed additives can regulate gut functions[J]. BioMed Research International,2019,2019:5721585.
    [52] NOUGAYRÈDE J P, HOMBURG S, TAIEB F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells[J]. Science,2006,313(5788):848-851. doi: 10.1126/science.1127059
    [53] DING W K, SHANGGUAN Y Y, ZHU Y Q, et al. Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: linked with gut microbiota and microRNAs[J]. Environmental Pollution,2021,286:117685. doi: 10.1016/j.envpol.2021.117685
    [54] NEVES A, ROSA S, GONÇALVES J, et al. Screening of five essential oils for identification of potential inhibitors of IL-1-induced Nf-kappaB activation and NO production in human chondrocytes: characterization of the inhibitory activity of alpha-pinene[J]. Planta Medica,2010,76(3):303-308. doi: 10.1055/s-0029-1186085
    [55] HE X, WEI Z, WANG J, et al. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis[J]. Scientific Reports,2016,6:28370. doi: 10.1038/srep28370
    [56] ZHA L Y, CHEN J D, SUN S X, et al. Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway[J]. PLoS One,2014,9(9):e107655. doi: 10.1371/journal.pone.0107655
    [57] JIN Y X, ZHENG S S, FU Z W. Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio)[J]. Fish & Shellfish Immunology,2011,30(4/5):1049-1054.
    [58] HO C J, LIN R W, ZHU W H, et al. Transcription-independent and-dependent p53-mediated apoptosis in response to genotoxic and non-genotoxic stress[J]. Cell Death Discovery,2019,5:131. doi: 10.1038/s41420-019-0211-5
    [59] YUAN F, WANG J L, LI R X, et al. A new regulatory mechanism between P53 and YAP crosstalk by SIRT1 mediated deacetylation to regulate cell cycle and apoptosis in A549 cell lines[J]. Cancer Management and Research,2019,11:8619-8633. doi: 10.2147/CMAR.S214826
    [60] OGUNDELE O M, SANYA O J. Bax modulates neuronal survival while p53 is unaltered after Cytochrome C induced oxidative stress in the adult olfactory bulb in vivo[J]. Annals of Neurosciences,2015,22(1):19-25.
    [61] JIA G, WANG Q, WANG R, et al. Tubeimoside-1 induces glioma apoptosis through regulation of bax/bcl-2 and the ROS/cytochrome C/caspase-3 pathway[J]. OncoTargets and Therapy,2015,8:303-311. ⊗
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  116
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29

目录

    /

    返回文章
    返回