第三代移动式大气环境激光雷达监测系统及其应用

The third-generation movable atmospheric environment Lidar monitoring system (AML-3) and its application

  • 摘要: 介绍了第三代移动式大气环境激光雷达监测系统(AML-3)的结构和主要设备,展示了该系统在监测颗粒物、气态污染物方面的优势,并在中国环境科学研究院(40.04°N,116.41°E)开展了大气环境和气象监测试验。结果表明:与常规地面环境监测相比,AML-3实现了对常规污染物浓度和颗粒物消光系数的近地面、垂直与斜程廓线分布以及地面气象要素(温度、相对湿度、风速、风向和大气压)的可移动综合监测;随高度增加大气颗粒物后向散射系数呈先增大后减小的趋势,并在近地面出现极大值区,同时,晴天大风天气条件下气溶胶层高度较晴天低风速天气条件下增加明显;相对湿度较大时,颗粒物数浓度与相对湿度呈负相关,反之呈正相关。

     

    Abstract: The key instruments and its equipment of the third generation movable atmospheric environment Lidar monitoring system (AML-3) were introduced, and the advantages of this system in monitoring the particles and gaseous pollutants described. The experiments focusing on the atmospheric environment issues and meteorological elements were carried out in Chinese Research Academy of Environmental Sciences (40.04°N,116.41°E). The results show that compared with the normal monitoring systems, the AML-3 has obvious advantages in integrated and movable observation of near-surface, vertical and slanting route profile distribution of normal pollutants concentrations and particle extinction coefficients, as well as the surface meteorological elements, such as temperature, relevant humidity, wind speed, wind direction and atmospheric pressure. The aerosol backscattering coefficients reach its highest value near the surface and gradually decrease with the altitude increase at the experimental site in Beijing; the aerosol concentration layer during the clear sky with strong winds is obviously higher than that during the clear sky with week winds. At the experimental place, when the relative humidity is low, the number concentration of particles has negative correlation relationship with relative humidity; meanwhile, when the relative humidity is higher, the number concentration of particles in atmosphere has positive correlation relationship with relative humidity.

     

/

返回文章
返回