留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工湿地氮转化对水位变化响应的研究进展

郭士林 叶春 李春华 许士洪

郭士林, 叶春, 李春华, 许士洪. 人工湿地氮转化对水位变化响应的研究进展[J]. 环境工程技术学报, 2016, 6(6): 585-590. doi: 10.3969/j.issn.1674-991X.2016.06.084
引用本文: 郭士林, 叶春, 李春华, 许士洪. 人工湿地氮转化对水位变化响应的研究进展[J]. 环境工程技术学报, 2016, 6(6): 585-590. doi: 10.3969/j.issn.1674-991X.2016.06.084
GUO Shilin, YE Chun, LI Chunhua, XU Shihong. Research Progress of Nitrogen Transformation in Constructed Wetlands in Response to Water-level Change[J]. Journal of Environmental Engineering Technology, 2016, 6(6): 585-590. doi: 10.3969/j.issn.1674-991X.2016.06.084
Citation: GUO Shilin, YE Chun, LI Chunhua, XU Shihong. Research Progress of Nitrogen Transformation in Constructed Wetlands in Response to Water-level Change[J]. Journal of Environmental Engineering Technology, 2016, 6(6): 585-590. doi: 10.3969/j.issn.1674-991X.2016.06.084

人工湿地氮转化对水位变化响应的研究进展

doi: 10.3969/j.issn.1674-991X.2016.06.084
详细信息
    通讯作者:

    叶春 E-mail: yechun@craes.org.cn

  • 中图分类号: X522

Research Progress of Nitrogen Transformation in Constructed Wetlands in Response to Water-level Change

More Information
    Corresponding author: YE Chun E-mail: yechun@craes.org.cn
  • 摘要: 人工湿地氮转化途径主要包括微生物的硝化反硝化作用、植物的吸收和湿地基质的吸附等。水位变化作为水文机制的重要方面,直接或间接的影响人工湿地环境各种形态氮质和量的变化。阐述了人工湿地氮转化机理和影响因子,并从湿地环境植物形态特征及生长发育、理化性质(DO、pH、Eh)和微生物的硝化反硝化强度三方面对水位变化响应的角度总结了国内外的相关研究进展,并提出研究中存在的问题和相关的建议:加强不同水位变化模式(水位变动幅度、水位变动周期)对人工湿地各种形态氮转化影响的研究,通过水位调控改善植物生长策略、提高微生物硝化反硝化强度,实现增强人工湿地脱氮功效的目的。

     

  • [1] VYMAZAL J.Constructed wetlands for wastewater treatment: five decades of experience[J].Environmental Science & Technology, 2010, 45(1):61-69
    [2] KADLEC R H, WALLACE S D.Treatment Wetlands, second ed [M]. CRC Press, Boca Raton, FL, 2008.
    [3] 王丽, 胡金明, 宋长春, 等.水位梯度对三江平原典型湿地植物根茎萌发及生长的影响[J].应用生态学报, 2007, 18(11):2432-2437
    [4] VYMAZAL J.Removal of nutrients in various types of constructed wetlands[J].The Science of the total environment, 2007, 380(1-3):48-65
    [5] KADLEC R H, WALLACE S, KNIGHT R L.Treatment wetlands[J].Soil Science, 2009, 162(6):233-48
    [6] FAULWETTER J L, GAGNON V, SUNDBERG C, et al.Microbial processes influencing performance of treatment wetlands: A review[J].Ecological Engineering, 2009, 35(6):987-1004
    [7] VYMAZAL J.The use of subsurface-flow constructed wetlands for wastewater treatment in the Czech Republic[J].Water Science & Technology, 2001, 44(11-12):369-374
    [8] STEIN O R, HOOK P B, BIEDERMAN J A, et al.Does batch operation enhance oxidation in subsurface constructed wetlands[J].Water Science & Technology, 2003, 48(5):149-156
    [9] STEIN O R, HOOK P B.Temperature,plants,and oxygen: how does season affect constructed wetland performance?[J].Journal of Environmental Science & Health Part A Toxichazardous Substances & Environmental Engineering, 2005, 40(6-7):1331-1342
    [10] WU S, KUSCHK P, BRIX H, et al.Development of constructed wetlands inperformance intensifications for wastewater treatment: A nitrogen and organic matter targeted review[J].Water research, 2014, 57(5):40-55
    [11] LEE C G, FLETCHER T D, SUN G.Nitrogen removal in constructed wetland systems[J].Engineering in Life Sciences, 2009, 9(1):11-22
    [12] ZHANG X, LIU X, DING Q.Morphological responses to water-level fluctuations of two submerged macrophytes,Myriophyllum spicatum and Hydrilla verticillata[J].Journal of Plant Ecology, 2012, 6(1):64-70
    [13] 王海洋, 陈家宽, 周进.水位梯度对湿地植物生长、繁殖和生物量分配的影响[J].植物生态学报, 1999, 23(03):269-274
    [14] 丁巧林, 徐菊芳, 余婷, 等.水位变动对2种水生植物生长及生物量分配的影响.[J].河北林业科技, 2014, 0(1):1-3
    [15] 李晓宇, 刘兴土, 李秀军, 等.不同干湿交替频率对芦苇生长和生理的影响[J].草业学报, 2015, 24(3):99-107
    [16] SASIKALA S, TANAKA N, JINADASA K B S N.Effect of Water Level Fluctuations on Nitrogen Removal and Plant Growth Performance in Vertical Subsurface-Flow Wetland Mesocosms[J].Journal of Freshwater Ecology, 2008, 23(1):101-112
    [17] SMITH R G B, BROCK M A.The Ups and Downs of Life on the Edge: The Influence of Water Level Fluctuations on Biomass Allocation in two Contrasting Aquatic Plants[J].Plant Ecology, 2007, 188(1):103-116
    [18] SHAW G A, ADAMS J B, BORNMAN T G.Sediment characteristics and vegetation dynamics as indicators for the potential rehabilitation of an estuary salt marsh on the arid west coast of South Africa[J].Journal of Arid Environments, 2008, 72(6):1097-1109
    [19] 李红丽, 智颖飙, 雷光春, 等.不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局[J].生态学报, 2009, 29(7):3525-3531
    [20] LAAN P, BLOM C W P M.Growth and Survival Responses of Rumex Species to Flooded and Submerged Conditions: The Importance of Shoot Elongation,Underwater Photosynthesis and Reserve Carbohydrates[J].Journal of Experimental Botany, 1990, 41(7):775-783
    [21] ARMSTRONG J, ARMSTRONG W, BECKETT P M.Phragmites australis Venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation[J].New Phytologist, 1992, 120(2):197-207
    [22] CONNELL E L, COLMER T D, WALKER D I.Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination[J].Aquatic Botany, 1999, 63(3):219-228
    [23] 刘志宽, 马青兰, 牛快快.湿地植物根系泌氧及其在湿地处理中的应用[J].海南师范大学学报自然科学版, 2010, 23(1):84-86
    [24] 成水平, 夏宜琤.香蒲、灯心草人工湿地的研究──Ⅱ净化污水的空间[J].湖泊科学, 1998, 10(1):62-66
    [25] 邓泓, 叶志鸿, 黄铭洪.湿地植物根系泌氧的特征.[J].华东师范大学学报(自然科学版), 2007, 0(6):69-76
    [26] SASIKALA S, TANAKA N, WAH H S Y W, et al.Effects of water level fluctuation on radial oxygen loss,root porosity,and nitrogen removal in subsurface vertical flow wetland mesocosms[J].Ecological Engineering, 2009, 35(3):410-417
    [27] TANAKA N, YUTANI K, AYE T, et al.Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature[J].Hydrobiologia, 2007, 583(1):165-172
    [28] 刘永, 郭怀成, 周丰, 等.湖泊水位变动对水生植被的影响机理及其调控方法[J].生态学报, 2006, 26(9):3117-3126
    [29] KLUDZE H K, DELAUNE R E.Soil redox intensity effects on oxygen exchange and growth of cattail and sawgrass[J].Soil Sci Soc Am J, 1996, 60(2):616-621
    [30] BEZBARUAH A N, ZHANG T C.Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland[J].Biotechnology and bioengineering, 2005, 89(3):308-318
    [31] BIA?OWIEC A, DAVIES L, ALBUQUERQUE A, et al.The influence of plants on nitrogen removal from landfill leachate in discontinuous batch shallow constructed wetland with recirculating subsurface horizontal flow[J].Ecological Engineering, 2012, 40(3):44-52
    [32] FITZ W J, WENZEL W W.Arsenic transformation in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation.[J].Journal of Biotechnology, 2002, 99(3):259-278
    [33] KLUDZE H K, DELAUNE R D, PATRICK W H.Aerenchyma formation and methane and oxygen exchange in rice[J].Soil Science Society of America Journal, 1993, 57(2):386-391
    [34] Tanner C C, ' Eugenio J D, Mcbride G B, et al.Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms[J].Ecological Engineering, 1999, 12(1):67-92
    [35] 马涛, 易能, 张振华, 等.凤眼莲根系分泌氧和有机碳规律及其对水体氮转化影响的研究[J].农业环境科学学报, 2014, 33(10):2003-2013
    [36] BAI J, GAO H, DENG W, et al.Nitrification potential of marsh soils from two natural saline–alkaline wetlands[J].Biology and Fertility of Soils, 2010, 46(5):525-529
  • 加载中
计量
  • 文章访问数:  1284
  • HTML全文浏览量:  92
  • PDF下载量:  1071
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-16
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-11-20

目录

    /

    返回文章
    返回