Volume 7 Issue 6
Nov.  2017
Turn off MathJax
Article Contents
GU Yu, ZHENG Youfei, GAO Qingxian, ZHANG Yanyan, LIU Ting, MA Zhanyun. The third-generation movable atmospheric environment Lidar monitoring system (AML-3) and its application[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 651-660. doi: 10.3969/j.issn.1674-991X.2017.06.90
Citation: GU Yu, ZHENG Youfei, GAO Qingxian, ZHANG Yanyan, LIU Ting, MA Zhanyun. The third-generation movable atmospheric environment Lidar monitoring system (AML-3) and its application[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 651-660. doi: 10.3969/j.issn.1674-991X.2017.06.90

The third-generation movable atmospheric environment Lidar monitoring system (AML-3) and its application

doi: 10.3969/j.issn.1674-991X.2017.06.90
More Information
  • Corresponding author: Qingxian GAO E-mail: gaoqx@craes.org.cn
  • Received Date: 2017-03-06
  • Publish Date: 2017-11-20
  • The key instruments and its equipment of the third generation movable atmospheric environment Lidar monitoring system (AML-3) were introduced, and the advantages of this system in monitoring the particles and gaseous pollutants described. The experiments focusing on the atmospheric environment issues and meteorological elements were carried out in Chinese Research Academy of Environmental Sciences (40.04°N,116.41°E). The results show that compared with the normal monitoring systems, the AML-3 has obvious advantages in integrated and movable observation of near-surface, vertical and slanting route profile distribution of normal pollutants concentrations and particle extinction coefficients, as well as the surface meteorological elements, such as temperature, relevant humidity, wind speed, wind direction and atmospheric pressure. The aerosol backscattering coefficients reach its highest value near the surface and gradually decrease with the altitude increase at the experimental site in Beijing; the aerosol concentration layer during the clear sky with strong winds is obviously higher than that during the clear sky with week winds. At the experimental place, when the relative humidity is low, the number concentration of particles has negative correlation relationship with relative humidity; meanwhile, when the relative humidity is higher, the number concentration of particles in atmosphere has positive correlation relationship with relative humidity.

     

  • loading
  • [1]
    马志强, 王跃思, 孙扬 , 等. 北京大气中常规污染物的垂直分布特征[J]. 环境科学研究, 2007,20(5):1-6.

    MA Z Q, WANG Y S, SUN Y , et al. Characteristics of vertical air pollutants in Beijing[J]. Research of Environmental Science, 2007,20(5):1-6.
    [2]
    SCHOTLAND R M. Some observations of the vertical profile of water vapor by a laser optical radar [C]//Proc 4th symposium on remote sensing of environment.Michigan:University of Michigan, 1966: 273-283.
    [3]
    MELFI S H, LAWRENCE J D, MCCORMICK M P , et al. Observation of Raman scattering by water vapor in the atmosphere[J]. Applied Physics Letters, 1969,15(9):295-297.
    doi: 10.1073/pnas.1302040110 pmid: 23716664
    [4]
    MELFI S H . Remote measurements of the atmosphere using Raman scattering[J]. Applied Optics, 1972,11(7):1605.
    doi: 10.1364/AO.11.001605 pmid: 20119194
    [5]
    COONEY J . Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter[J]. Journal of Applied Meteorology, 2010,9(1):182.
    doi: 2.0.CO;2" target="_blank"> 10.1175/1520-0450(1970)009<0182:RMOAWV>2.0.CO;2
    [6]
    GIBSON A J, THOMAS L . Ultraviolet laser sounding of the troposphere and lower stratosphere[J]. Nature, 1975,256:561-563.
    doi: 10.1038/256561a0
    [7]
    MEGIE G, BOS F, BLAMONT E , et al. Simultaneous nighttime Lidar measurements of atmosphevic sodium and potassium[J]. Planetury & Space Science, 1978,26(1):27-35.
    doi: 10.3897/zookeys.898.46917 pmid: 31875089
    [8]
    FREDRIKSSON K, GALLE B, NYSTRON K , et al. Lidar system applied in atmospheric pollution monitoring[J]. Applied Optics, 1979,18(17):2998-3003.
    doi: 10.1364/AO.18.002998 pmid: 20212792
    [9]
    KOLSCH H J, RAIROUX P, WOLF J P , et al. Simultaneous NO and NO2 DIAL measurement using BBO crystals[J]. Applied Optics, 1989,28(11):2052-2056.
    doi: 10.1364/AO.28.002052 pmid: 20555467
    [10]
    National Aeronautics and Space Administration.The cloud-aerosol Lidar and infrared pathfinder satellite observation (CALIPSO)[EB/OL].[2017-4-10]..
    [11]
    CAMY-PEYRET C, HAUGLUSTAINE D, KELDER H , et al. Report for assessment of the earth explorer core mission:atmospheric composition explorer for chemistry and climate interaction(ACECHEM)[J].Dissertations & Theses-gradworks, 2011(4):1257.
    doi: 10.1136/bmjopen-2019-033247 pmid: 31874887
    [12]
    BORGEAUD M, DRINKWATER M, SILVESTRIN P, et al. Status of the ESA earth explorer missions and the new ESA earth observation science strategy [C]//Geoscience and remote sensing symposium.New York:IEEE, 2015.
    [13]
    尹青, 何金海, 张华 . 激光雷达在气象和大气环境监测中的应用[J]. 气象与环境学报, 2009,25(5):48-56.

    YIN Q, HE J H, ZHANG H . Application of laser radar in monitoring meteorological and atmospheric environment[J]. Journal of Meteorology and Environment, 2009,25(5):48-56.
    [14]
    王庚辰 . 我国大气臭氧探测技术的进展现状[J].地球科学进展, 1991(6):31-36.
    [15]
    刘会平, 是度芳, 贺渝龙 , 等. 双端差分吸收激光雷达及其大气污染测试[J]. 光电子激光, 2001,12(1):65-66.

    LIU H P, SHI D F, HE Y L , et al. Dual-end differential absorption laser system and its measurement for the atmospheric pollution[J]. Journal of Optoelectronics, 2001,12(1):65-66.
    [16]
    张寅超, 胡欢陵, 谭锟 , 等. AML21车载式大气污染监测激光雷达样机研制[J]. 光学学报, 2004,24(8):1025-1031.

    ZHANG Y C, HU H L, TAN K , et al. Development of a mobile lidar system for air pollution monitoring[J]. Acta Optica Sinica, 2004,24(8):1015-1031.
    [17]
    曹开法, 胡顺星 . AML-2车载激光雷达测量边界层污染物分布廓线[J]. 大气与环境光学学报, 2011,6(2):146-153.
    [18]
    张改霞, 张寅超, 胡顺星 , 等. AML-1车载测污激光雷达探测大气边界层气溶胶[J]. 强激光与粒子束, 2004,16(3), 286-290.

    ZHANG G X, ZHANG Y C, HU S X , et al. Measurements of planetary boundary layer aerosols with mobile lidar AML-1[J]. High Power Laser and Particle Beams, 2004,16(3):286-290.
    [19]
    胡顺星, 胡欢陵, 张寅超 , 等. 差分吸收激光雷达测量环境SO2[J]. 中国激光, 2004,31(9):1121-1126.

    HU S X, HU H L, ZHANG Y C , et al. Diffferential absorption lidar for environmental SO2 measurents[J]. Chinese Journal of Laser, 2004,31(9):1121-1126.
    [20]
    魏合理, 龚知本, 马志军 , 等. 污染气体SO2和NO2紫外和可见光谱吸收截面测量[J]. 量子电子学报, 2008,18(1):16-19.
    [21]
    李学彬, 徐青山, 高亦桥 . 双角度光学粒子计数器标定研究[J]. 光学技术, 2007,33(增刊):337-338.
    [22]
    李学彬, 宫纯文, 李超 , 等. 利用双角度光学粒子计数器测量大气气容胶质量浓度[J]. 大气与环境光学学报, 2008,3(6):444-447.

    LI X B, GONG C W, LI C , et al. Retrieving mass concerntration of aerosol partical using dual-scattering-angle optical particle counter[J]. Journal of Atmospheric and Environmental Optics, 2008,3(6):444-447.
    [23]
    李学彬, 高亦桥, 魏合理 . 双散射角光学粒子计数器的研制[J]. 光学精密工程, 2009,17(7):1528-1534.

    LI X B, GAO Y Q, WEI H L , et al. Development of optical particle counter with double scattering angles[J]. Optics and Precision Engineering, 2009,17(7):1528-1534.
    [24]
    陈敏, 孙东松, 顾江 , 等. 激光雷达探测的大气气溶胶空间二维分布[J]. 红外与激光工程, 2006,36(3):369-372.

    CHEN M, SUN D S, GU J , et al. Two-dimensional distribution of aerosol measured by lidar[J]. Infrared and Laser Engineering, 2006,36(3):369-372.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(487) PDF Downloads(609) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return