留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿烟羽消散技术对污染物扩散特性的影响

马修元 惠润堂 杨爱勇

马修元, 惠润堂, 杨爱勇. 湿烟羽消散技术对污染物扩散特性的影响[J]. 环境工程技术学报, 2017, 7(5): 533-538. doi: 10.3969/j.issn.1674-991X.2017.05.073
引用本文: 马修元, 惠润堂, 杨爱勇. 湿烟羽消散技术对污染物扩散特性的影响[J]. 环境工程技术学报, 2017, 7(5): 533-538. doi: 10.3969/j.issn.1674-991X.2017.05.073
MA Xiuyuan, HUI Runtang, YANG Aiyong. Effects of wet plume elimination technology on pollutants diffusion[J]. Journal of Environmental Engineering Technology, 2017, 7(5): 533-538. doi: 10.3969/j.issn.1674-991X.2017.05.073
Citation: MA Xiuyuan, HUI Runtang, YANG Aiyong. Effects of wet plume elimination technology on pollutants diffusion[J]. Journal of Environmental Engineering Technology, 2017, 7(5): 533-538. doi: 10.3969/j.issn.1674-991X.2017.05.073

湿烟羽消散技术对污染物扩散特性的影响

doi: 10.3969/j.issn.1674-991X.2017.05.073
详细信息
    作者简介:

    马修元(1984—),男,工程师,博士,主要研究方向为燃煤烟气污染物控制技术研究,mxy4815@163.com

  • 中图分类号: X131.1

Effects of wet plume elimination technology on pollutants diffusion

  • 摘要: 湿法脱硫出口的饱和湿烟气直接由烟囱排入环境会形成湿烟羽,产生视觉污染。分析了湿烟羽的形成和消散过程,重点考察直接加热、降温再热和直接降温等湿烟羽消散技术对颗粒物、SO2和NO2扩散特性的影响。结果表明:湿烟羽消散技术对环境颗粒物浓度影响很小,颗粒物最大落地浓度占标率小于1.5%,颗粒物最大落地浓度远低于GB 3095—2012《环境空气质量标准》的浓度限值;降温再热和直接加热可以促进SO2和NO2在环境中的扩散,2种技术分别使SO2和NO2最大落地浓度占标率降低了31.5%和15.1%;采用直接降温技术消散湿烟羽后,SO2和NO2最大落地浓度占标率分别小于20%和70%,SO2和NO2最大落地浓度仍低于GB 3095—2012的浓度限值。

     

  • [1] 沈利, 朱云水, 赵宁宁 . 1 000 MW 燃煤机组湿烟囱防腐方案[J]. 电力建设, 2013,34(12):82-85.

    SHEN L, ZHU Y S, ZHAO N N . Anti-corrosion schemes for wet chimney for 1 000 MW coal-fired units[J]. Electric Power Construction, 2013,34(12):82-85.
    [2] 吴永杰, 戴永阳, 董凌宏 , 等. 华能杨柳青电厂2×300 MW机组湿烟囱烟囱雨治理研究[J]. 能源环境保护, 2014,28(5):16-19.

    WU Y J, DAI Y Y, DONG L H , et al. The research of managing wet stack rain in the Huaneng Yangliuqing Power Plant 2×300 MW unit[J]. Energy Environmental Protection, 2014,28(5):16-19.
    [3] 欧阳丽华, 庄烨, 刘科伟 , 等. 燃煤电厂湿烟囱降雨成因分析[J]. 环境科学, 2015,36(6):1975-1982.

    OUYANG L H, ZHUANG Y, LIU K W , et al. Analysis on mechanism of rainout carried by wet stack of thermal power plant[J]. Environmental Science, 2015,36(6):1975-1982.
    [4] 周洪光 . 如何正确认识火电厂湿烟气排放及白雾现象[J]. 环境工程, 2015,33(增刊):433-437.

    ZHOU H G . A correct understanding of the wet flue gas emission and white spray phenomenon in coal-fired power plants[J]. Environmental Engineering, 2015,33(Suppl):433-437.
    [5] 周晶, 刘道清, 汪庆丰 . 烧结烟气脱硫系统湿烟气排放的环境问题探讨[J]. 宝钢技术, 2012(5):37-44.

    ZHOU J, LIU D Q, WANG Q F . Discussion on wet flue gas emission of sintering FGD[J]. Bao-Steel Technology, 2012(5):37-44.
    [6] 裘立春 . 大型燃煤电站锅炉冒白烟的研究[J]. 锅炉技术, 2015,46(3):26-29.

    QIU L C . The research on stack white fume in large utility boiler burning coal[J]. Boiler Technology, 2015,46(3):26-29.
    [7] 赵文升, 刘英 . 国华台山电厂烟囱消除白雾的研究与应用[J]. 军民两用技术与产品, 2015(4):177-180.

    ZHAO W S, LIU Y . Research and application of eliminating white mist in chimney of Guohua Taishan Power Plant[J]. Dual Use Technologies & Products, 2015(4):177-180.
    [8] 谭玲君, 赵晓峰, 梁增英 , 等. 垃圾焚烧发电厂白烟成因及其分析[J]. 环境科学与技术, 2014,37(增刊2):483-485.

    TAN L J, ZHAO X F, LIANG Z Y , et al. Analysis of the white smoke problem in waste incineration power plant[J]. Environmental Science & Technology, 2014,37(Suppl 2):483-485.
    [9] 聂玉强, 邝小磊, 宋春华 . 陶瓷厂喷雾干燥塔白烟形成的机理及解决措施[J]. 环境工程, 2006,24(4):71-75.

    NIE Y Q, KUANG X L, SONG C H . The formation mechanism of white-smoke in spray drying tower of ceramicfactory and solving measures[J]. Environmental Engineering, 2006,24(4):71-75.
    [10] 朱文杰 . 湿式冷却塔白烟现象分析与解决方案[J]. 制冷空调与电力机械, 2010,31(4):20-23.

    ZHU W J . Analysis and solutions of "white smoke" phenomenon of the wet cooling tower[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2010,31(4):20-23.
    [11] 肖敬斌 . 大气污染物扩散稀释的计算机模拟研究[D]. 北京:北京化工大学, 2004: 16-22.

    XIAO J B . The research of computer modeling on atmospheric contamination diffusing[D]. Beijing:Beijing University of Chemical Technology, 2004: 16-22.
    [12] 陈静锋, 柴瑞瑞, 闫浩 , 等. 基于高斯烟羽模型的PM2.5污染源扩散规律模拟分析[J]. 系统工程, 2015,33(9):153-158.

    CHEN J F, CHAI R R, YAN H , et al. PM2.5 pollution source diffusion law and simulation analysis based on the gauss plume model[J]. Systems Engineering, 2015,33(9):153-158.
    [13] 王东歌, 朱法华, 惠润堂 , 等. 相变凝聚器对 WESP 提效研究及工程应用[J]. 中国电机工程学报, 2016,36(16):4349-4355.

    WANG D G, ZHU F H, HUI R T , et al. Experimental investigation and engineering practice of PTC on increasing WESP collection efficiency[J]. Proceedings of the CSEE, 2016,36(16):4349-4355.
    [14] 朱立平, 谭厚章, 熊英莹 , 等. 锅炉烟气中微细颗粒的湿式相变凝聚试验研究[J]. 科学技术与工程, 2015,15(1):210-215.

    ZHU L P, TAN H Z, XIONG Y Y , et al. Experimental research on wet phase change condensation of fine particle in boiler flue gas[J]. Science Technology and Engineering, 2015,15(1):210-215.
    [15] 熊英莹, 谭厚章 . 湿式相变冷凝除尘技术对微细颗粒物的脱除研究[J]. 洁净煤技术, 2015,21(2):20-24.

    XIONG Y Y, TAN H Z . Influence of wet phase transition condensate dust removal technology on fine particle removal[J]. Clean Coal Technology, 2015,21(2):20-24.
  • 加载中
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  123
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 刊出日期:  2017-09-20

目录

    /

    返回文章
    返回