留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hsieh和Kljun模型的城市生态系统碳通量贡献区分析与对比

龚元 赵敏 姚鑫 郭智娟 何毅 张立平

龚元, 赵敏, 姚鑫, 郭智娟, 何毅, 张立平. 基于Hsieh和Kljun模型的城市生态系统碳通量贡献区分析与对比[J]. 环境工程技术学报, 2017, 7(2): 225-231. doi: 10.3969/j.issn.1674-991X.2017.02.033
引用本文: 龚元, 赵敏, 姚鑫, 郭智娟, 何毅, 张立平. 基于Hsieh和Kljun模型的城市生态系统碳通量贡献区分析与对比[J]. 环境工程技术学报, 2017, 7(2): 225-231. doi: 10.3969/j.issn.1674-991X.2017.02.033
GONG Yuan, ZHAO Min, YAO Xin, GUO Zhijuan, HE Yi, ZHANG Liping. Analysis and comparison of carbon flux contribution zones in urban ecological system based on Hsieh and Kljun models[J]. Journal of Environmental Engineering Technology, 2017, 7(2): 225-231. doi: 10.3969/j.issn.1674-991X.2017.02.033
Citation: GONG Yuan, ZHAO Min, YAO Xin, GUO Zhijuan, HE Yi, ZHANG Liping. Analysis and comparison of carbon flux contribution zones in urban ecological system based on Hsieh and Kljun models[J]. Journal of Environmental Engineering Technology, 2017, 7(2): 225-231. doi: 10.3969/j.issn.1674-991X.2017.02.033

基于Hsieh和Kljun模型的城市生态系统碳通量贡献区分析与对比

doi: 10.3969/j.issn.1674-991X.2017.02.033
详细信息
    作者简介:

    龚元(1992—),男,硕士研究生,研究方向为大气环境与GIS应用, 1072363740@qq.com

    通讯作者:

    赵敏 E-mail: zhaomin@shnu.edu.cn

  • 中图分类号: X51

Analysis and comparison of carbon flux contribution zones in urban ecological system based on Hsieh and Kljun models

More Information
    Corresponding author: Min ZHAO E-mail: zhaomin@shnu.edu.cn
  • 摘要: 利用上海市奉贤大学城内的涡动相关通量观测站点,基于Hsieh和Kljun模型对研究区内的碳通量贡献区进行了分析。结果表明:1)随着大气稳定度的增加,各风向上的碳通量贡献区范围有增加的趋势;2)当大气处于稳定条件下时,非主风向上的碳通量贡献区范围要大于主风向;3)当大气处于不稳定状态时,主风向和非主风向上的碳通量贡献区范围相差不大;4)在各风向和各大气稳定度上Hsieh和Kljun模型所输出的碳通量贡献区范围数值不同,但无显著差异,碳通量贡献区范围形态近似椭圆;5)Hsieh和Kljun模型输出的垂直于主风向和非主风向上的碳通量贡献区的长度无显著差异;6)在迎风向上Hsieh和Kljun模型的碳通量贡献峰值所处的位置有显著差异。

     

  • [1] 赵荣钦, 黄贤金 . 城市系统碳循环:特征、机理与理论框架[J]. 生态学报, 2013,33(2):358-366.
    doi: 10.5846/stxb201111121721

    ZHAO R Q, HUANG X J . Carbon cycle of urban system:characteristics,mechanism and theoretical framework[J]. Acta Ecologica Sinica, 2013,33(2):358-366. doi: 10.5846/stxb201111121721
    [2] MILANOLO S, GABROVŠEK F . Estimation of carbon dioxide flux degassing from percolating waters in a karst cave:case study from Bijambare cave,Bosnia and Herzegovina[J]. Chemie der Erde-Geochemistry, 2015,75(4):465-474.
    doi: 10.1016/j.chemer.2015.10.004
    [3] KORDOWSKI K, KUTTLER W . Carbon dioxide fluxes over an urban park area[J]. Atmospheric Environment, 2010,44(23):2722-2730.
    doi: 10.1016/j.atmosenv.2010.04.039 pmid: 26408111
    [4] KISHORE K M, SHIVA N S M . Characteristics of ground level CO2 concentrations over contrasting land uses in a tropical urban environment[J]. Atmospheric Environment, 2015,115:286-294.
    [5] KURPPA M, NORDBO A, HAAPANALA S , et al. Effect of seasonal variability and land use on particle number and CO2 exchange in Helsinki,Finland[J]. Urban Climate, 2015(13):94-109.
    [6] GIOLI B, GUALTIERI G, BUSILLO C , et al. Improving high resolution emission inventories with local proxies and urban eddy covariance flux measurements[J]. Atmospheric Environment, 2015,115:246-256.
    doi: 10.1016/j.atmosenv.2015.05.068
    [7] VELASCO E, PERRUSQUIA R, JIMÉNEZ E , et al. Sources and sinks of carbon dioxide in a neighborhood of Mexico City[J]. Atmospheric Environment, 2014,97:226-238.
    doi: 10.1016/j.atmosenv.2014.08.018
    [8] GAHAGAN A, GIARDINA C P, KING J S , et al. Carbon fluxes,storage and harvest removals through 60 years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan,USA[J]. Forest Ecology and Management, 2015,337:88-97.
    doi: 10.1016/j.foreco.2014.10.037
    [9] SHAH M V, BADLE S S, RAMACHANDRAN K B . Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynjournal pathway[J]. Biochemical Engineering Journal, 2013,80:53-60.
    doi: 10.1016/j.bej.2013.09.013
    [10] HAGAN O A . Probabilistic uncertainty specification:overview,elaboration techniques and their application to a mechanistic model of carbon flux[J]. Environmental Modelling & Software, 2012,36:35-48.
    [11] GREGG W W, CASEY N W, ROUSSEAUX C S . Sensitivity of simulated global ocean carbon flux estimates to forcing by reanalysis products[J]. Ocean Modelling, 2014,80:24-35.
    doi: 10.1016/j.ocemod.2014.05.002
    [12] BORCHARD N, SCHIRRMANN M, HEBEL C V , et al. Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany[J]. Agriculture,Ecosystems & Environment, 2015,211:84-93.
    [13] HARRIS A, DASH J . The potential of the MERIS terrestrial chlorophyll index for carbon flux estimation[J]. Remote Sensing of Environment, 2010,114(8):1856-1862.
    doi: 10.1016/j.rse.2010.03.010
    [14] 袁庄鹏 . 碳通量变化特征及影响因子研究[D]. 上海:上海师范大学, 2013.
    [15] 王江涛 . 崇明东滩滨海围垦区芦苇湿地CO2通量特征[D]. 上海:华东师范大学, 2015.
    [16] 顾永剑, 高宇, 郭海强 , 等. 崇明东滩湿地生态系统碳通量贡献区分析[J]. 复旦学报(自然科学版), 2008,47(3):374-379.

    GU Y J, GAO Y, GUO H Q , et al. Footprint analysis for carbon flux in the wetland ecosystem of Chongming Dongtan[J]. Journal of Fudan University(Natural Science), 2008,47(3):374-379.
    [17] 袁庄鹏, 赵敏 . 基于FSAM模型的城市碳通量观测贡献区研究[J]. 上海师范大学学报(自然科学版), 2012,41(5):533-539.

    YUAN Z P, ZHAO M . Research of flux footprint of city based on the FSAM model[J]. Journal of Shanghai Normal University(Natural Sciences), 2012,41(5):533-539.
    [18] 龚笑飞, 陈丽萍, 莫路锋 . 基于FSAM模型的毛竹林碳通量贡献区研究[J]. 西南林业大学学报, 2015,35(6):37-43.

    GONG X F, CHEN L P, MO L F . Research of flux footprint of anji bamboo forest ecosystems based on the FSAM model[J]. Journal of Southwest Forestry University, 2015,35(6):37-43.
    [19] 刘郁珏, 胡非, 程雪玲 , 等. 北京城市通量足迹及源区分布特征分析[J]. 大气科学, 2014,38(6):1044-1054.
    doi: 10.3878/j.issn.1006-9895.2013.13237

    LIU Y J, HU F, CHENG X L , et al. Distribution of the source area and footprint of Beijing[J]. Chinese Journal of Atmospheric Sciences, 2014,38(6):1044-1054. doi: 10.3878/j.issn.1006-9895.2013.13237
    [20] KLJUN N, CALANCE P, ROTACH M W , et al. A simple parameterization for flux footprint predictions[J]. Boundary Layer Meteorogy, 2004,112:503-523.
    [21] 袁庄鹏, 赵敏, 黄辞海 , 等. 城市节假日前后碳通量特征及其与车流量关系[J]. 环境工程学报, 2013,7(9):3501-3506.

    YUAN Z P, ZHAO M, HUANG C H , et al. Characteristics of CO2 flux before and after holidays and its relationship with traffic volume in urban area[J]. Chinese Journal of Environmental Engineering, 2013,7(9):3501-3506.
    [22] 鲍文东 . 基于GIS的土地利用动态变化研究[D]. 青岛:山东科技大学, 2007.
    [23] NEFTEL A, SPIRIG C, AMMANN C . Application and test of a simple tool for operational footprint evaluations[J]. Environmental Pollution, 2008,152(3):644-652.
    doi: 10.1016/j.envpol.2007.06.062 pmid: 17766018
    [24] 范琳琳, 王红瑞, 宋乃琦 , 等. 基于T检验的水文时间序列HHT分析方法及应用[J]. 系统工程理论与实践, 2015,35(5):1324-1331

    FAN L L, WANG H R, SONG N Q , et al. Hilbert-Huang transform based on T-test for hydrological time series and its application[J]. Systems Engineering:Theory and Practice, 2015,35(5):1324-1331.
    [25] CATLING D C, ZAHNLE K J, MCKAY C . Biogenic methane,hydrogen escape,and the irreversible oxidation of early earth[J]. Science, 2001,293:839-843.
    doi: 10.1126/science.1061976 pmid: 11486082
    [26] HASHIMOTO S, MORISHITA T, SAKATA T , et al. Increasing trends of soil greenhouse gas fluxes in Japanese forests from 1980 to 2009[J]. Scientific Reports, 2011,1(1):116.
    doi: 10.1038/srep00116 pmid: 22355633
    [27] PORADA P, LENTON T M, POHL A , et al. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician[J]. Nature Communications, 2016,7:12113.
    doi: 10.1038/ncomms12113 pmid: 27385026
    [28] HELLEVANG H, AAGAARD P . Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model[J]. Scientific Reports, 2015,5:17352.
    doi: 10.1038/srep17352 pmid: 26611741
    [29] KORNER C, ASSHOFF R, BIGNUCOLO O , et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2[J]. Science, 2005,309:1360-1362.
    doi: 10.1126/science.1113977 pmid: 16123297
    [30] 郭海强, 邵长亮, 董刚 . 涡度协方差技术:测量及数据分析的实践指导[M].1版. 北京: 高等教育出版社, 2016: 171-214.
    [31] FINN D, LAMB B, LECLERC M Y , et al. Experimental evaluation of analytical and Lagrangian surface-layer flux footprint models[J]. Boundary-Layer Meteorology, 1996,80(3):283-308.
    doi: 10.1007/BF00119546
    [32] FLESCH T K, WILSON J D, YEE E . Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions[J]. Journal of Applied Meteorology, 1995,34(6):1320-1332.
    doi: 10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2
    [33] SCHMID H P . Experimental design for flux measurements:matching observations and fluxes[J]. agricultural and Forest Meteorology, 1997,87:179-200.
    doi: 10.1016/S0168-1923(97)00011-7
    [34] SCHMID H P . Footprint modeling for vegetation atmosphere exchange studies:a review and perspective[J]. Agricultural and Forest Meteorology, 2002,113(1/2/3/4):159-183.
    doi: 10.1016/S0168-1923(02)00107-7
    [35] KORMANN R, MEIXNER F X . An analytical footprint model for non-neutral stratification[J]. Boundary-Layer Meteorology, 2001,99(2):207-224.
    doi: 10.1016/j.envpol.2007.06.062 pmid: 17766018
    [36] AMIRO B D . Footprint climatologies for evapotranspiration in a boreal catchment[J]. Agricultural and Forest Meteorology, 1998,90(3):195-201.
    doi: 10.1016/S0168-1923(97)00096-8
    [37] BALDOCCHI D . Flux footprints within and over forest canopies[J]. Boundary-Layer Meteorology, 1997,85(2):273-292.
    doi: 10.1023/A:1000472717236
  • 加载中
计量
  • 文章访问数:  1343
  • HTML全文浏览量:  116
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-12
  • 刊出日期:  2017-03-20

目录

    /

    返回文章
    返回