留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相平衡分配法的店埠河沉积物重金属质量基准研究

熊鸿斌 汪中意

熊鸿斌,汪中意.基于相平衡分配法的店埠河沉积物重金属质量基准研究[J].环境工程技术学报,2024,14(1):330-335 doi: 10.12153/j.issn.1674-991X.20230569
引用本文: 熊鸿斌,汪中意.基于相平衡分配法的店埠河沉积物重金属质量基准研究[J].环境工程技术学报,2024,14(1):330-335 doi: 10.12153/j.issn.1674-991X.20230569
XIONG H B,WANG Z Y.Application of equilibrium partitioning approach to derive sediment quality guideline (SQG) values for heavy metals in the Dianbu River[J].Journal of Environmental Engineering Technology,2024,14(1):330-335 doi: 10.12153/j.issn.1674-991X.20230569
Citation: XIONG H B,WANG Z Y.Application of equilibrium partitioning approach to derive sediment quality guideline (SQG) values for heavy metals in the Dianbu River[J].Journal of Environmental Engineering Technology,2024,14(1):330-335 doi: 10.12153/j.issn.1674-991X.20230569

基于相平衡分配法的店埠河沉积物重金属质量基准研究

doi: 10.12153/j.issn.1674-991X.20230569
基金项目: 安徽省重大科技项目(08010302114)
详细信息
    作者简介:

    熊鸿斌(1963—),男,教授级高工,博士生导师,主要从事水污染防治技术、环境影响评价理论与方法研究,xhb6324@sina.com

  • 中图分类号: X820

Application of equilibrium partitioning approach to derive sediment quality guideline (SQG) values for heavy metals in the Dianbu River

  • 摘要:

    以店埠河为研究对象,采用校正后的相平衡分配法推导了店埠河沉积物中5种重金属(Cr、Cu、Zn、Cd、Pb)的沉积物质量基准(SQG)值,并分析了各金属结合相对不同重金属沉积物质量基准的贡献。结果表明:店埠河沉积物中Cr、Cu、Zn、Cd和Pb的沉积物质量基准值分别为318.80、122.24、1 326.99、7.88和31.43 mg/kg;各金属结合相对不同重金属的沉积物质量基准值的贡献存在差异,细颗粒物(粒径<63 μm)对店埠河5种重金属沉积物质量基准值的贡献率为24.49%~48.93%,其中对Cr、Zn和Cu的沉积物质量基准值的贡献最大。酸可挥发性硫化物对Cu、Zn、Cd和Pb的沉积物质量基准值的贡献率分别为2.11%、0.22%、50.13%和21.67%,主要决定着Cd的SQG。总有机碳和残渣态对这5种重金属SQG的贡献率较低,均不足3%。

     

  • 图  1  店埠河采样点分布

    Figure  1.  Sampling point map of the Dianbu River

    图  2  不同金属结合相对重金属沉积物质量基准值的贡献

    Figure  2.  The contribution of each metal binding phase to the SQG of five heavy metals

    表  1  店埠河重金属沉积物质量基准推导模型

    Table  1.   Derivation models of heavy metal SQG values in the Dianbu River

    重金属推导模型
    Pb,CuSQG=KWQC×(1+A%+B%)+$ \dfrac{1}{n} $×AVS×lgKp/ΣlgKM+MR(1−A%)
    Zn,CdSQG=KWQC×(1+A%)+$ \dfrac{1}{n} $×AVS×lgKp/ΣlgKM+MR(1−A%)
    CrSQG =KWQC×(1+A%)+MR(1−A%)
    下载: 导出CSV

    表  2  店埠河重金属相平衡分配系数

    Table  2.   Kp of heavy metals in the Dianbu River

    重金属MR/(mg/kg)CS/(mg/kg)CIW/(μg/L)Kp/(L/kg)logKp
    取值范围平均值取值范围平均值取值范围平均值平均值
    Cr32.08~64.9554.012.40~27.1810.480.10~0.880.6516123.14.21
    Cu10.75~35.5520.9511.38~48.2725.312.70~5.684.245969.33.78
    Zn21.84~175.4577.6114.25~2090.80437.629.19~55.4932.5513444.64.13
    Cd0.01~0.080.030.29~2.100.780.04~0.650.3920003.30
    Pb14.30~36.3920.9010.30~38.0521.5916.79~19.4717.991200.13.08
    下载: 导出CSV

    表  3  店埠河沉积物中各金属结合相的浓度

    Table  3.   Contents of metal binding phases in sediments of the Dianbu River

    采样点 细颗粒物/% TOC/% AVS/(μmol/g) MR/(mg/kg)
    Cr Cu Zn Cr Pb
    S195.892.230.5832.0810.7521.840.005514.30
    S296.672.690.4644.8414.62142.130.011518.16
    S392.563.670.2362.5921.93175.450.028518.55
    S497.872.980.1640.3514.5882.000.013017.38
    S598.124.120.7857.3617.5154.010.018023.27
    S697.331.970.8964.9524.4972.560.033022.06
    S797.342.671.4764.7025.7463.430.025018.10
    S896.232.550.6754.3235.55101.020.077536.39
    S996.762.190.5558.2220.4267.740.016520.87
    S1094.671.780.4950.0418.0847.820.031019.29
    S1197.382.780.8258.3320.3753.990.024516.21
    S1298.112.540.2460.3427.3049.380.026526.25
    平均值96.582.680.6154.0120.9577.610.025920.90
    下载: 导出CSV

    表  4  店埠河重金属的沉积物质量基准推导和标准化结果

    Table  4.   Derivation and standardization results of SQG values for heavy metals in the Dianbu River mg/kg 

    校正项 Cr Cu Zn Cd Pb
    Kp×WQC 161.23 59.69 672.23 2.00 12.00
    细颗粒物校正值 155.72 57.65 649.24 1.93 11.59
    TOC校正值 1.60 0.32
    AVS校正值 2.58 2.87 3.95 6.81
    残渣态校正值 1.85 0.72 2.65 0.71
    SQG 318.80 122.24 1 326.99 7.88 31.43
    下载: 导出CSV

    表  5  不同水体重金属的沉积物质量基准

    Table  5.   SQG values for heavy metals in different water bodies mg/kg 

    水体 Cr Cu Pb Zn Cd 数据来源
    店埠河 318.80 122.24 31.43 1 326.99 7.88 本研究
    巢湖 78.53 56.95 362.93 74.68 23.90 文献[14]
    太湖 55.3 20.6 201.5 6.42 文献[12]
    辽河 52.8 18.9 177.7 5.42 文献[12]
    鄱阳湖 59.93 76.13 109.32 3.50 文献[13]
    湘江衡阳段(基于
    地表水Ⅰ类标准)
    64.62 55.57 1 360.40 2.34 文献[11]
    LEL 26 16 31 120 0.6 文献[22]
    SEL 110 110 250 820 10 文献[22]
    ERL 81 34 46.7 150 1.2 文献[22]
    ERM 370 270 218 410 9.6 文献[22]
      注:LEL表示最低效应水平;SEL表示严重效应水平;ERL表示效应范围低值;ERM表示效应范围中值。
    下载: 导出CSV
  • [1] 高秋生, 田自强, 焦立新,等. 白洋淀重金属污染特征与生态风险评价[J]. 环境工程技术学报,2019,9(1):66-75. doi: 10.3969/j.issn.1674-991X.2019.01.010

    GAO Q S, TIAN Z Q, JIAO L X, et al. Pollution characteristics and ecological risk assessment of heavy metals in Baiyangdian Lake[J]. Journal of Environmental Engineering Technology,2019,9(1):66-75. doi: 10.3969/j.issn.1674-991X.2019.01.010
    [2] HUANG Z, LIU C, ZHAO X, et al. Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China[J]. Environmental Sciences Europe,2020,32:1-9. doi: 10.1186/s12302-019-0282-1
    [3] 符运拓, 杨红, 王春峰. 长江口邻近海域表层沉积物重金属赋存形态及生态危害评估[J]. 海洋环境科学,2022,41(4):534-542.

    FU Y T, YANG H, WANG C F. The occurrence forms and ecological hazard evaluation of heavy metals in the surface sediments near the Yangtze Estuary[J]. Marine Environmental Science,2022,41(4):534-542.
    [4] 吴斌, 宋金明, 李学刚, 等. 一致性沉积物质量基准 (CBSQGs) 及其在近海沉积物环境质量评价中的应用[J]. 环境化学,2011,30(11):1949-1956.

    WU B, SONG J M, LI X G, et al. Consistent sediment quality standards (CBSQGs) and their application in environmental quality assessment of offshore sediments[J]. Environmental Chemistry,2011,30(11):1949-1956.
    [5] 钟文珏, 曾毅, 祝凌燕. 水体沉积物质量基准研究现状[J]. 生态毒理学报,2013,8(3):285-294. doi: 10.7524/AJE.1673-5897.20111113003

    ZHONG W Y, ZENG Y, ZHU L Y. Current research status of sediment quality criteri[J]. Asian Journal of Ecotoxicology,2013,8(3):285-294. doi: 10.7524/AJE.1673-5897.20111113003
    [6] 陈静生, 王飞越. 关于水体沉积物质量基准问题[J]. 环境化学,1992,11(3):60-70.

    CHEN J S, WANG F Y. On the issue of sediment quality standards for water bodies[J]. Environmental Chemistry,1992,11(3):60-70.
    [7] BROWN T N. QSPRs for predicting equilibrium partitioning in solvent–air systems from the chemical structures of solutes and solvents[J]. Journal of Solution Chemistry,2022,51(9):1101-1132. doi: 10.1007/s10953-022-01162-2
    [8] BARRICK R, BELLER H, BECKER S. Use of the apparent effects threshold approach (AET) in classifying contaminated sediments[M]//Contaminated marine sediments:assessment and remediation.Washington DC:National Academy Press, 1989:64-77.
    [9] NEFF J M, CORNABY B W, VAGA R M, et al. An evaluation of the screening level concentration approach for validation of sediment quality criteria for freshwater and saltwater ecosystems[M]. ASTM International, 1988.
    [10] LONG E R. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program[M]. US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, 1990.
    [11] HAN C, QIN Y, ZHENG B, et al. Sediment quality assessmentfor heavy metal pollution in the Xiang-jiang River (China) withthe equilibrium partitioning approach[J]. Environmental Earthsciences,2014,72:5007-5018.
    [12] 邓保乐, 祝凌燕, 刘慢, 等. 太湖和辽河沉积物重金属质量基准及生态风险评估[J]. 环境科学研究,2011,24(1):33-42. doi: 10.13198/j.res.2011.01.35.dengby.015

    DENG B L, ZHU L Y, LIU M, et al. Sediment quality criteria and ecological risk assessment for heavy metalsin Taihu Lake and Liao River[J]. Research of Environmental Sciences,2011,24(1):33-42. doi: 10.13198/j.res.2011.01.35.dengby.015
    [13] 江良, 弓晓峰, 袁少芬, 等. 鄱阳湖沉积物重金属质量基准研究及其生态风险评估[J]. 环境污染与防治, 2020, 42(1): 94-100.

    JIANG L, GONG X F, YUAN S F, et al. Study on the sediment quality criteria and ecological risk assessment for heavy metals in Poyang Lake [J] Environmental Pollution & Control, 2020, 42(1): 94-100.
    [14] HUO S, XI B, YU X, et al. Application of equilibrium partitioning approach to derive sediment quality criteria for heavy metals in a shallow eutrophic lake, Lake Chaohu, China[J]. Environmental Earth Sciences,2013,69:2275-2285. doi: 10.1007/s12665-012-2056-6
    [15] 王静, 叶寅, 王允青, 等. 利用氮氧同位素示踪技术解析巢湖支流店埠河硝酸盐污染源[J]. 水利学报,2017,48(10):1195-1205.

    WANG J, YE Y, WANG Y Q, et al. Analysis of nitrate pollution sources in Dianbu River, a tributary of Chaohu Lake, using nitrogen and oxygen isotope tracing technology[J]. Journal of Hydraulic Engineering,2017,48(10):1195-1205.
    [16] 彭浩. 合肥市店埠河流域乡村面源污染现状分析与防治对策[J]. 安徽农学通报,2018,24(17):1-4.

    PENG H. Analysis and prevention measures of rural non-point source pollution in Dianbu River Basin[J]. Anhui Agricultural Science Bulletin,2018,24(17):1-4.
    [17] 张蕾. 巢湖沉积物重金属污染特征研究[D]. 北京: 北京交通大学, 2009.
    [18] DITORO D M, MAHONY J D, HANSEN D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments[J]. Environmental Science & Technology,1992,26(1):96-101.
    [19] BROWN R H, BAKER D J, WILSON W S. The Utility of AVS/EqP in hazardous waste site evaluations[M]. Washington: NOAA Technical Memorandum Seattle, 1995: 101.
    [20] YUN Z C, HAO Y, ZHANG Z K, et al. Application of equilibrium partitioning approach to the derivation of sedimentquality guidelines for metals in Dianchi Lake[J]. Pedosphere,2007,17(3):284-294. doi: 10.1016/S1002-0160(07)60035-6
    [21] TESSIER A, CAMPBELL P G C, AUCLAIR J C, et al. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area[J]. Canadian Journal of Fisheries and Aquatic Sciences,1984,41(10):1463-1472. doi: 10.1139/f84-180
    [22] MACDONALD D D, INGERSOLL C G, BERGER T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems[J]. Archives of Environmental Contamination and Toxicology,2000,39:20-31. ⊕ doi: 10.1007/s002440010075
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  31
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 录用日期:  2023-11-03
  • 修回日期:  2023-09-25

目录

    /

    返回文章
    返回