留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京杭运河上游河段磷污染时空分布特征及污染源解析

金梦 兰亚琼 丁淼 嵇春红 刘锐

金梦,兰亚琼,丁淼,等.京杭运河上游河段磷污染时空分布特征及污染源解析[J].环境工程技术学报,2024,14(1):43-51 doi: 10.12153/j.issn.1674-991X.20230546
引用本文: 金梦,兰亚琼,丁淼,等.京杭运河上游河段磷污染时空分布特征及污染源解析[J].环境工程技术学报,2024,14(1):43-51 doi: 10.12153/j.issn.1674-991X.20230546
JIN M,LAN Y Q,DING M,et al.Spatio-temporal distribution of phosphorus pollution in the upper reaches of Beijing-Hangzhou Canal and its source analysis[J].Journal of Environmental Engineering Technology,2024,14(1):43-51 doi: 10.12153/j.issn.1674-991X.20230546
Citation: JIN M,LAN Y Q,DING M,et al.Spatio-temporal distribution of phosphorus pollution in the upper reaches of Beijing-Hangzhou Canal and its source analysis[J].Journal of Environmental Engineering Technology,2024,14(1):43-51 doi: 10.12153/j.issn.1674-991X.20230546

京杭运河上游河段磷污染时空分布特征及污染源解析

doi: 10.12153/j.issn.1674-991X.20230546
基金项目: 浙江省科技创新领军人才项目(2020R52039);嘉兴市“创新嘉兴 优才支持计划”项目;长江生态环境保护修复城市驻点跟踪研究(2022-LHYJ-02-0503-02)
详细信息
    作者简介:

    金梦(1994—),女,硕士研究生,主要从事水污染溯源技术研究,805890063@qq.com

    通讯作者:

    刘锐(1973—),女,研究员,主要从事水污染防治技术研究,liuruitsinghuazj@gmail.com

  • 中图分类号: X522

Spatio-temporal distribution of phosphorus pollution in the upper reaches of Beijing-Hangzhou Canal and its source analysis

  • 摘要:

    为揭示京杭运河上游桐乡段总磷浓度不能稳定达到GB 3838—2002《地表水环境质量标准》Ⅲ类标准的原因,在桐乡段干流布设24个采样点,入河支流布设18个采样点,开展水质加密监测,研究磷污染发生的时空变化规律;基于水质常规指标的主成分分析,以及各主成分因子中强载荷指标与三维荧光组分的相关性分析,对重点河段磷的主要污染源进行解析;并基于绝对主成分—多元线性回归模型,定量评价主要磷污染源的贡献率。结果表明:1)京杭运河上游桐乡段干流入境水总磷浓度为0.14~0.20 mg/L,沿程监测点5~7、9和21~24有明显变差趋势,最高浓度达0.40 mg/L;部分入河支流水质较差,总磷浓度达到0.44 mg/L。2)主成分分析得到3个主因子,因子1以氨氮、溶解态磷为主要载荷,与类蛋白质组分显著相关,代表生产生活污染;因子2以高锰酸盐指数、溶解态磷、颗粒态氮为主要载荷,与类腐殖质组分显著相关,代表农业源;因子3以颗粒态磷、颗粒态氮为主要载荷,与浊度显著相关,代表码头污染与底泥源。3)运河上游河段的磷污染主要发生在干流监测点5~7和9,主要为码头污染与底泥源,其在丰水期和平水期的贡献率分别为65.9%和31.8%;监测点21~24主要为农业源,其在丰水期和平水期的贡献率分别为34.0%和32.1%;此外,生产生活污染在丰水期也有较大影响,其对监测点5~7和9、21~24的贡献率分别为42.6%、31.8%。

     

  • 图  1  研究区域地理位置和采样点布设

    Figure  1.  Geographical location of the study area and sampling points

    图  2  运河干流3个水期水体磷浓度时空变化

    Figure  2.  Temporal and spatial variation of phosphorus in the mainstream water of the canal during three water periods

    图  3  运河主要入河支流3个水期水体磷浓度时空变化

    Figure  3.  Temporal and spatial variation of phosphorus in the main inlet tributaries of the canal during three water periods

    图  4  磷污染源对运河干流重点河段贡献率

    Figure  4.  Source contribution to phosphorus in key river segments of canal mainstream

    表  1  运河干流水体其他水质指标浓度和荧光组分强度

    Table  1.   Concentration of other water quality indexes and intensity of fluorescence components in the mainstream water of the canal

    月份 水质指标/(mg/L) 荧光组分强度/R.U.
    浊度1) 溶解氧
    浓度
    高锰酸盐
    指数
    总氮浓度 溶解态氮
    浓度
    颗粒态氮
    浓度
    氨氮浓度 硝态氮
    浓度
    C1荧光
    强度
    C2荧光
    强度
    C3荧光
    强度
    5月(平水期) 230±77 5.1±0.9 6.0±0.6 3.52 ± 0.32 2.74±0.30 0.77±0.30 0.30±0.17 2.08 ±0.35 2.38±0.90 0.68±0.19 0.33±0.03
    6月(丰水期) 221±70 2.9±0.5 5.2±0.7 4.29±0.37 3.80±0.25 0.49±0.29 1.40±0.34 1.56±0.54 1.52±0.51 0.53±0.09 0.60±0.04
    12月(枯水期) 553±310 9.9±0.4 3.9±0.6 4.03±0.55 3.44±0.32 0.59±0.38 0.79±0.14 2.62±0.25 1.58±0.40 0.58±0.15 0.15±0.02
      1)单位为NTU。
    下载: 导出CSV

    表  2  运河干流重点河段旋转因子载荷矩阵

    Table  2.   Rotation factor loading matrix in key river segments of canal mainstream

    指标 因子1 因子2 因子3
    溶解态磷 0.596 0.518 −0.476
    颗粒态磷 0.049 −0.023 0.872
    高锰酸盐指数 −0.252 0.892 0.087
    氨氮 0.910 −0.078 −0.351
    颗粒态氮 −0.097 0.618 0.565
    溶解态氮 0.492 0.205 −0.699
    硝态氮 −0.881 −0.091 −0.138
    溶解氧 −0.503 −0.810 0.122
    浊度 −0.224 −0.646 0.190
      注:数字加粗表示强、中载荷。
    下载: 导出CSV
  • [1] WEATHERS K C, STRAYER D L, LIKENS G E. Fundamentals of ecosystem science[M]. 2nd Ed. Utah: Academic Press, 2021: 189-213.

    WEATHERS K C, STRAYER D L, LIKENS G E. Fundamentals of ecosystem science[M]. 2nd Ed. Utah: Academic Press, 2021: 189-213.
    [2] BOWES M J, SMITH J T, NEAL C, et al. Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working[J]. Science of the Total Environment,2011,409(18):3418-3430. doi: 10.1016/j.scitotenv.2011.04.049
    [3] CHENG X, CHEN L D, SUN R H, et al. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions[J]. Environmental Science and Pollution Research,2018,25(21):20946-20955. doi: 10.1007/s11356-018-2191-z
    [4] WANG M H, WANG Y, LI Y, et al. Natural and anthropogenic determinants of riverine phosphorus concentration and loading variability in subtropical agricultural catchments[J]. Agriculture Ecosystems & Environment, 2020, 287: 106713.
    [5] 夏峰. 京杭运河稳定断面形态及其应用研究[D]. 南京: 东南大学, 2018.
    [6] LI A, JANG J K, SCHEFF P A. Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago[J]. Environmental Science & Technology,2003,37(13):2958-2965.
    [7] 陈锋, 孟凡生, 王业耀, 等. 地表水环境污染物受体模型源解析研究与应用进展[J]. 南水北调与水利科技,2016,14(2):32-37.

    CHEN F, MENG F S, WANG Y Y, et al. Research and application progress of source apportionment in receptor model for surface water pollutant[J]. South-to-North Water Transfers and Water Science & Technology,2016,14(2):32-37.
    [8] 程思茜. 基于PMF和PCA-APCS-MLR受体模型的地下水污染源定性识别和定量解析[D]. 成都: 西南交通大学, 2021.
    [9] SHEN D L, HUANG S H, ZHANG Y P, et al. The source apportionment of N and P pollution in the surface waters of lowland urban area based on EEM-PARAFAC and PCA-APCS-MLR[J]. Environmental Research,2021,197:111022. doi: 10.1016/j.envres.2021.111022
    [10] LIU L L, DONG Y C, KONG M, et al. Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models[J]. Chemosphere,2020,242:125272. doi: 10.1016/j.chemosphere.2019.125272
    [11] 后希康, 张凯, 段平洲, 等. 基于APCS-MLR模型的沱河流域污染来源解析[J]. 环境科学研究,2021,34(10):2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30

    HOU X K, ZHANG K, DUAN P Z, et al. Pollution source apportionment of Tuohe River based on absolute principal component score-multiple linear regression[J]. Research of Environmental Sciences,2021,34(10):2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30
    [12] YANG L Y, HAN D H, LEE B M, et al. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification[J]. Chemosphere,2015,127:222-228. doi: 10.1016/j.chemosphere.2015.02.028
    [13] 李昊璋. 平原河网区域的水环境容量研究: 以嘉兴北部地区为例[D]. 上海: 上海交通大学, 2020.
    [14] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境出版社, 2002.
    [15] SANCHEZ N P, SKERIOTIS A T, MILLER C M. Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation-filtration in a full scale water treatment plant[J]. Water Research,2013,47(4):1679-1690. doi: 10.1016/j.watres.2012.12.032
    [16] 李昀, 魏鸿杰, 王侃, 等. 溶解性有机物(DOM)与区域土地利用的关系: 基于三维荧光-平行因子分析(EEM-PARAFAC)[J]. 环境科学,2019,40(4):1751-1759.

    LI Y, WEI H J, WANG K, et al. Analysis of the relationship between dissolved organic matter (DOM) and watershed land-use based on three-dimensional fluorescence-parallel factor (EEM-PARAFAC) analysis[J]. Environmental Science,2019,40(4):1751-1759.
    [17] GUPTA S, ROY M. Land use/land cover classification of an urban area: a case study of Burdwan Municipality, India[J]. International Journal of Geomatics and Geosciences,2011,2(4):1014-1026.
    [18] 胡海珍. 典型平原河网区污染负荷与水质响应关系模拟研究: 以常州市为例[D]. 重庆: 重庆交通大学, 2023.
    [19] 熊传芳, 张征宇, 万梅, 等. 嘉兴市大气PM2.5中金属元素污染特征、生态风险评价及来源分析[J]. 环境工程技术学报,2023,13(1):96-104.

    XIONG C F, ZHANG Z Y, WAN M, et al. Pollution characteristics, ecological risk assessment and source apportionment of mental elements in PM2.5 in Jiaxing City[J]. Journal of Environmental Engineering Technology,2023,13(1):96-104.
    [20] PEKEY H, KARAKAŞ D, BAKOGˇLU M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses[J]. Marine Pollution Bulletin,2004,49(9/10):809-818.
    [21] 柳强, 张鹏, 史箴, 等. 三峡库区上游沱江流域总磷浓度时空变化特性及影响因素分析[J]. 环境工程技术学报,2022,12(2):459-467.

    LIU Q, ZHANG P, SHI Z, et al. Characterization of the spatio-temporal variations of total phosphorus concentrations and influencing factors analysis in Tuojiang River Basin, an upstream tributary of the Three Gorges Reservoir[J]. Journal of Environmental Engineering Technology,2022,12(2):459-467.
    [22] 丁淼, 金梦, 兰亚琼, 等. 基于3DEMMs-PARAFAC技术的运河桐乡水源地夏季低溶解氧成因研究[J]. 环境化学,2023,42(6):1933-1944. doi: 10.7524/j.issn.0254-6108.2022012006

    DING M, JIN M, LAN Y Q, et al. Study on the cause of low dissolved oxygen in summer in Tongxiang water source of Canal based on 3DEMMs-PARAFAC technology[J]. Environmental Chemistry,2023,42(6):1933-1944. doi: 10.7524/j.issn.0254-6108.2022012006
    [23] 郑倩玉, 刘硕, 万鲁河, 等. 松花江哈尔滨段水环境质量评价及污染源解析[J]. 环境科学研究,2018,31(3):507-513.

    ZHENG Q Y, LIU S, WAN L H, et al. Water environmental quality assessment and source apportionment in Harbin section of Songhua River[J]. Research of Environmental Sciences,2018,31(3):507-513.
    [24] SU S L, LI D, ZHANG Q, et al. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China[J]. Water Research,2011,45(4):1781-1795. doi: 10.1016/j.watres.2010.11.030
    [25] SIMEONOV V, STRATIS J A, SAMARA C, et al. Assessment of the surface water quality in Northern Greece[J]. Water Research,2003,37(17):4119-4124. doi: 10.1016/S0043-1354(03)00398-1
    [26] 胡国仲, 谭印月, 林欢, 等. 京杭运河常州段水质提升策略研究[J]. 清洗世界,2023,39(2):125-127.

    HU G Z, TAN Y Y, LIN H, et al. Study on water quality improvement strategy of Changzhou section of Beijing-Hangzhou Canal[J]. Cleaning World,2023,39(2):125-127.
    [27] 刘琳. 环渤海河流卤代阻燃剂的入海通量及其在典型河口的环境行为研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2022.
    [28] 刘丽贞, 黄琪, 吴永明, 等. 鄱阳湖CDOM三维荧光光谱的平行因子分析[J]. 中国环境科学,2018,38(1):293-302.

    LIU L Z, HUANG Q, WU Y M, et al. Fluorescent characteristics of CDOM in Poyang Lake analyzed by three-dimensional excitation-emission matrix spectroscopy and parallel factor analysis[J]. China Environmental Science,2018,38(1):293-302.
    [29] TAO P R, JIN M, YU X B, et al. Spatiotemporal variations in chromophoric dissolved organic matter (CDOM) in a mixed land-use river: implications for surface water restoration[J]. Journal of Environmental Management,2021,277:111498. doi: 10.1016/j.jenvman.2020.111498
    [30] HUANG F, WANG X Q, LOU L P, et al. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques[J]. Water Research,2010,44(5):1562-1572. doi: 10.1016/j.watres.2009.11.003
    [31] BAKER A, INVERARITY R. Protein-like fluorescence intensity as a possible tool for determining river water quality[J]. Hydrological Processes,2004,18(15):2927-2945. doi: 10.1002/hyp.5597
    [32] 徐爱喆, 韩晓昆, 刘铭轩, 等. 渤海湾两条河流及其近岸海域水体中DOM的光谱特征及影响因素[J]. 地球与环境,2022,50(4):526-536. doi: 10.14050/j.cnki.1672-9250.2022.50.006

    XU A Z, HAN X K, LIU M X, et al. Spectral characteristics and influencing factors of dissolved organic matter in two rivers and their coastal waters in the Bohai Bay[J]. Earth and Environment,2022,50(4):526-536. doi: 10.14050/j.cnki.1672-9250.2022.50.006
    [33] 孙婵. 水生植物群落建植对城市湖泊水环境影响研究[D]. 南京: 南京林业大学, 2008.
    [34] 李凯. 旅游活动对西湖水质的影响研究[D]. 杭州: 浙江工商大学, 2012.
    [35] SYVITSKI J P M, VÖRÖSMARTY C J, KETTNER A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science,2005,308(5720):376-380. doi: 10.1126/science.1109454
    [36] RUSPITA R, AULIA A. Analysis of water quality and pollution index at Karangantu fishing port area, Banten[J]. Journal Akademika Kimia,2022,11(2):96-104. doi: 10.22487/j24775185.2022.v11.i2.pp96-104
    [37] 杨卫, 李瑞清. 长江和汉江总磷污染特征及成因分析[J]. 中国农村水利水电,2021(1):42-47. doi: 10.3969/j.issn.1007-2284.2021.01.009

    YANG W, LI R Q. Characteristics and causes of the total phosphorus pollution in the Yangtze River and Han River[J]. China Rural Water and Hydropower,2021(1):42-47. doi: 10.3969/j.issn.1007-2284.2021.01.009
    [38] 毕业亮, 王华彩, 夏兵, 等. 雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学,2022,43(2):782-794.

    BI Y L, WANG H C, XIA B, et al. Pollution characterization and comprehensive water quality assessment of rain-source river: a case study of the Longgang River in Shenzhen[J]. Environmental Science,2022,43(2):782-794.
    [39] 黄健, 王萌, 宋箭, 等. 高碳氮废水处理中有机物的荧光光谱特征分析[J]. 中国给水排水,2015,31(3):28-31.

    HUANG J, WANG M, SONG J, et al. Analysis of fluorescent properties of organic matter in high carbon-nitrogen wastewater[J]. China Water & Wastewater,2015,31(3):28-31.
    [40] LEORA N, WILLIAMS M W, CAMPBELL D H, et al. Evaluating regional patterns in nitrate sources to watersheds in National Parks of the Rocky Mountains using nitrate isotopes[J]. Environmental Science & Technology,2008,42(17):6487-6493.
    [41] 刘瑞霞, 王立阳, 孙菲, 等. 以农业面源污染阻控为目标的河流生态缓冲带研究进展[J]. 环境工程学报,2022,16(1):25-39.

    LIU R X, WANG L Y, SUN F, et al. Research progress in riverine ecological buffer zone for control of agricultural non-point source pollution[J]. Chinese Journal of Environmental Engineering,2022,16(1):25-39.
    [42] YANG X L, YU X B, CHENG J R, et al. Impacts of land-use on surface waters at the watershed scale in southeastern China: insight from fluorescence excitation-emission matrix and PARAFAC[J]. Science of the Total Environment,2018,627:647-657. ◇ doi: 10.1016/j.scitotenv.2018.01.279
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  49
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 录用日期:  2023-10-08
  • 修回日期:  2023-08-22

目录

    /

    返回文章
    返回