留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热脱附对多环芳烃和重金属复合污染土壤的影响

吴秉泽 张文文 刘昭玥 马福俊 李海波 谷庆宝

吴秉泽,张文文,刘昭玥,等.热脱附对多环芳烃和重金属复合污染土壤的影响[J].环境工程技术学报,2024,14(1):121-129 doi: 10.12153/j.issn.1674-991X.20230320
引用本文: 吴秉泽,张文文,刘昭玥,等.热脱附对多环芳烃和重金属复合污染土壤的影响[J].环境工程技术学报,2024,14(1):121-129 doi: 10.12153/j.issn.1674-991X.20230320
WU B Z,ZHANG W W,LIU Z Y,et al.Effects of thermal desorption on the complex contaminated soils of polycyclic aromatic hydrocarbons and heavy metals[J].Journal of Environmental Engineering Technology,2024,14(1):121-129 doi: 10.12153/j.issn.1674-991X.20230320
Citation: WU B Z,ZHANG W W,LIU Z Y,et al.Effects of thermal desorption on the complex contaminated soils of polycyclic aromatic hydrocarbons and heavy metals[J].Journal of Environmental Engineering Technology,2024,14(1):121-129 doi: 10.12153/j.issn.1674-991X.20230320

热脱附对多环芳烃和重金属复合污染土壤的影响

doi: 10.12153/j.issn.1674-991X.20230320
基金项目: 国家重点研发计划项目(2019YFC1803800)
详细信息
    作者简介:

    吴秉泽(1998—),男,硕士研究生,主要从事土壤污染治理研究,704789032@qq.com

    通讯作者:

    李海波(1974—),男,教授,主要从事污水生态处理原理与技术研究,lihaibo@mail.neu.edu.cn

  • 中图分类号: X524

Effects of thermal desorption on the complex contaminated soils of polycyclic aromatic hydrocarbons and heavy metals

  • 摘要:

    热脱附技术被广泛用于污染场地修复,但其对多环芳烃(PAHs)与重金属复合污染土壤的综合影响仍不清楚。选用PAHs和重金属复合污染模拟土壤,探究热脱附温度(220~400 ℃)和停留时间(5~60 min)对土壤中PAHs的影响,分析空气与氮气气氛下热脱附温度(310、340和370 ℃)对土壤中重金属Cu、Pb、As和Cd形态分布的影响。结果表明:随热脱附温度和停留时间的增加,土壤中PAHs去除率显著增加;低环PAHs占比逐渐减少,而高环PAHs占比逐渐增加。在2种气氛热脱附后,Cu、Pb和As弱酸提取态占比略有增加,而Cd弱酸提取态占比显著降低;可还原态和可氧化态的转化趋势具有差异性。随着热脱附温度的升高,Cu、Pb、As和Cd 4种重金属的残渣态占比均逐渐增加,说明热脱附有利于4种重金属的固定。相较于空气,氮气条件下4种重金属可氧化态和残渣态占比均增加;Cu和Pb可还原态占比显著降低,而As可还原态占比有所降低,Cd可还原态占比变化不大。氮气更有利于Cu、Pb和Cd的稳定;相反,空气更有利于As的稳定。

     

  • 图  1  热脱附温度和停留时间对土壤中PAHs残留浓度和去除率的影响

    注:不同小写字母表示同一温度(停留时间)下不同类型PAHs去除率之间差异显著(P<0.05)。

    Figure  1.  Effects of thermal desorption temperature and residence time on PAHs removal rate and residual concentration in soil

    图  2  热脱附温度和停留时间对土壤中PAHs碳环占比及去除率的影响

    Figure  2.  Effects of thermal desorption temperature and residence time on the proportion and removal rate of PAHs carbon ring in soil

    图  3  空气和氮气气氛下热脱附对Cu、Pb、As、Cd 4种重金属形态的影响

    Figure  3.  Effects of thermal desorption on the speciation of Cu, Pb, As, and Cd in air and nitrogen atmosphere

    表  1  试验土壤重金属各形态占比

    Table  1.   Proportion of heavy metals in experimental soil % 

    重金属 重金属形态
    酸可提取态 可还原态 可氧化态 残渣态
    Cu17.24332.35833.48716.912
    Pb20.01342.16928.5589.260
    As22.01630.12434.96812.892
    Cd19.68325.68737.48517.145
    下载: 导出CSV

    表  2  试验土壤PAHs浓度

    Table  2.   PAHs contents in experimental soil mg/kg 

    FlePheAntPyrBaaBap总PAHs
    21.3418.2629.874.3846.727.21127.78
    下载: 导出CSV
  • [1] 白璐, 乔琦, 钟琴道, 等. 铅冶炼行业重金属污染防控监管现状分析及对策[J]. 环境工程技术学报,2017,7(2):232-241.

    BAI L, QIAO Q, ZHONG Q D, et al. Analysis and countermeasures for supervision and management of heavy metal pollution prevention and control of lead smelting industry[J]. Journal of Environmental Engineering Technology,2017,7(2):232-241.
    [2] 全国土壤污染状况调查公报[EB/OL]. [2023-02-10]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf.
    [3] 朱岗辉, 孙璐, 廖晓勇, 等. 郴州工业场地重金属和PAHs复合污染特征及风险评价[J]. 地理研究,2012,31(5):831-839.

    ZHU G H, SUN L, LIAO X Y, et al. Combined pollution of heavy metals and PAHs and its risk assessment in industrial sites of Chenzhou City[J]. Geographical Research,2012,31(5):831-839.
    [4] SU C, JIANG L Q, ZHANG W J. A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques[J]. Environmental Skeptics and Critics,2014,3(2):24-38.
    [5] SANSOM GARETT T, FAWKES LEANNE S, THOMPSON COURTNEY M, et al. Cancer risk associated with soil distribution of polycyclic aromatic hydrocarbons within three environmental justice neighborhoods in Houston, Texas[J]. Environmental Geochemistry and Health,2022,45(2):1-10.
    [6] 苑舒琪, 吴玉锋, 赵智博, 等. 电子废弃物拆解污染区土壤生态健康风险研究进展[J]. 生态毒理学报,2022,17(3):167-179.

    YUAN S Q, WU Y F, ZHAO Z B, et al. Research progress on soil ecological and health risks of E-waste disman-tling polluted area[J]. Asian Journal of Ecotoxicology,2022,17(3):167-179.
    [7] ZWOLAK A, SARZYŃSKA M, SZPYRKA E, et al. Sources of soil pollution by heavy metals and their accumulation in vegetables: a review[J]. Water, Air, & Soil Pollution, 2019, 230(7): 164.
    [8] 徐飞, 沈婷婷. 热脱附技术在化工厂污染土壤修复中的工程应用[J]. 当代化工,2020,49(5):997-1000.

    XU F, SHEN T T. Engineering application of thermal desorption technology in the remediation of contaminated soil in chemical plant[J]. Contemporary Chemical Industry,2020,49(5):997-1000.
    [9] 舒心, 胡培良, 李东阳, 等. 某炼铁厂汞和多环芳烃复合污染土壤热脱附试验研究[J]. 广东化工,2022,49(14):90-93. doi: 10.3969/j.issn.1007-1865.2022.14.032

    SHU X, HU P L, LI D Y, et al. Experimental study on thermal desorption of mercury and polycyclic aromatic hydrocarbons composite contaminated soil in an ironmaking plant[J]. Guangdong Chemical Industry,2022,49(14):90-93. doi: 10.3969/j.issn.1007-1865.2022.14.032
    [10] 柴丽娜, 张文文, 许端平, 等. 调理剂对多环芳烃污染黏性土壤热脱附的影响[J]. 环境科学研究,2023,36(1):72-80.

    CHAI L N, ZHANG W W, XU D P, et al. Effects of conditioners on thermal desorption of clay soil contaminated with polycyclic aromatic hydrocarbons[J]. Research of Environmental Sciences,2023,36(1):72-80.
    [11] 夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报,2014,65(4):1470-1480.

    XIA T X, JIANG L, WEI M, et al. PAHs thermal desorption behavior of coking plant soil and its effect on soil characteristics[J]. CIESC Journal,2014,65(4):1470-1480.
    [12] 魏萌. 焦化污染场地土壤中PAHs的赋存特征及热脱附处置研究[D]. 北京: 首都师范大学, 2013.
    [13] 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报,2018,49(4):993-1000.

    ZHANG X L, LIAO P H, LI Q, et al. Remediation of complex organic compounds in contaminated plot with in-situ thermal desorption[J]. Chinese Journal of Soil Science,2018,49(4):993-1000.
    [14] BONNARD M, DEVIN S, LEYVAL C, et al. The influence of thermal desorption on genotoxicity of multipolluted soil[J]. Ecotoxicology and Environmental Safety,2010,73(5):955-960. doi: 10.1016/j.ecoenv.2010.02.023
    [15] 万梦雪, 焦文涛, 胡文友, 等. 城市工业区土壤重金属累积特征与来源解析: 以上海市闵行区典型工业区为例[J]. 环境化学,2023,42(6):1886-1898.

    WAN M X, JIAO W T, HU W Y, et al. Accumulation and source apportionment of heavy metals in urbanindustrial soils: a case study in Minhang District of Shanghai[J]. Environmental Chemistry,2023,42(6):1886-1898.
    [16] DUSENGEMUNGU L, MUBEMBA B, GWANAMA C. Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects[J]. Scientific Reports,2022,12(1):1-16. doi: 10.1038/s41598-021-99269-x
    [17] HUO A D, WANG X, ZHAO Z X, et al. Risk assessment of heavy metal pollution in farmland soils at the northern foot of the Qinling Mountains, China[J]. International Journal of Environmental Research and Public Health,2022,19(22):14962. doi: 10.3390/ijerph192214962
    [18] 陈驰. 多环芳烃-重金属复合污染土壤热脱附-稳定化联合修复工艺研究[D]. 沈阳: 沈阳建筑大学, 2022.
    [19] 勾立争, 刘长波, 刘诗诚, 等. 热脱附法修复多环芳烃和汞复合污染土壤实验研究[J]. 环境工程,2018,36(2):184-187.

    GOU L Z, LIU C B, LIU S C, et al. Experimental research on thermal desorption to repair soil with polycyclic aromatic hydrocarbons-mercury compund contamination[J]. Environmental Engineering,2018,36(2):184-187.
    [20] 马迅,杨超,翁群强, 等. 退役油制气场地原位燃气热脱附应用效果[J]. 环境工程技术学报,2023,13(1):280-286. doi: 10.12153/j.issn.1674-991X.20210656

    MA X,YANG C, WENG Q Q, et al. Study on application effect of in-situ gas thermal remediation in decommissioned oil-to-gas production site[J]. Journal of Environmental Engineering Technology,2023,13(1):280-286. doi: 10.12153/j.issn.1674-991X.20210656
    [21] GAO Y, DIAS Da SILVA P, ALVAREZ P J J, et al. Integrating thermal analysis and reaction modeling for rational design of pyrolytic processes to remediate soils contaminated with heavy crude oil[J]. Environmental Science & Technology,2021,55(17):11987-11996.
    [22] CHENG Y, SUN H, YANG E T, et al. Distribution and bioaccessibility of polycyclic aromatic hydrocarbons in industrially contaminated site soils as affected by thermal treatment[J]. Journal of Hazardous Materials,2021,411:125129. doi: 10.1016/j.jhazmat.2021.125129
    [23] 李进平, 胡云娇, 陈思奇. 污泥热干化过程中重金属Pb、Cu、Zn的形态转化及稳定特性[J]. 环境工程学报,2015,9(12):6041-6044.

    LI J P, HU Y J, CHEN S Q. Stability characteristic and species transformation of Pb, Cu, Zn by thermal drying of sewage sludge[J]. Chinese Journal of Environmental Engineering,2015,9(12):6041-6044.
    [24] 张慷, 邓浩旺, 田科. 污泥热解与燃烧促进重金属固定化[J]. 湘潭大学学报(自然科学版),2022(5):102-110.

    ZHANG K, DENG H W, TIAN K. Sludge pyrolysis and combustion promote the immobilization of heavy metals[J]. Journal of Xiangtan University (Natural Science Edition),2022(5):102-110.
    [25] RUAN M, ZHANG Y, WU X, et al. Effects of initial particle sizes of Triarrhena lutarioriparia on processing performance, material properties, and heavy metal speciation in sewage sludge composting[J]. Environmental Science and Pollution Research International,2022,30(8):19980-19993. doi: 10.1007/s11356-022-23501-y
    [26] 李佳. 有机污染土壤修复决策模型与化学氧化—热脱附耦合技术研究[D]. 天津: 天津大学, 2018.
    [27] 张怡斐. 市政污泥热处理过程中主要污染物的迁移转化[D]. 上海: 上海交通大学, 2011.
    [28] 郭子逸. 污泥微波热解过程重金属迁移转化特性研究[D]. 武汉: 华中科技大学, 2016.
    [29] BANDARA T, CHATHURIKA J B A J, FRANKS A, et al. Interactive effects of biochar type and pH on the bioavailability of As and Cd and microbial activities in co-contaminated soils[J]. Environmental Technology & Innovation,2021,23:101767.
    [30] 朱雨锋, 孙柳, 李立青, 等. 黑臭水体治理: Ⅰ. 水体氧状态对沉积物中重金属形态及生物有效性的影响[J]. 环境科学学报,2023,43(2):1-10.

    ZHU Y F, SUN L, LI L Q, et al. Treatment of black and odorous water: Ⅰ. effects of water oxygen state on speciation and bioavailability of heavy metals in sediments[J]. Acta Scientiae Circumstantiae,2023,43(2):1-10.
    [31] 黄永炳, 王丽丽, 李晓娟, 等. 砷形态转化及其环境效应研究[J]. 环境污染与防治,2013,35(1):16-19.

    HUANG Y B, WANG L L, LI X J, et al. Transformation of arsenic species and its environmental effect[J]. Environmental Pollution and Control,2013,35(1):16-19.
    [32] 刘殊嘉. 餐厨垃圾高温好氧快速发酵过程中重金属形态转化特征及影响机制[D]. 上海: 华东师范大学, 2021.
    [33] WU B, GUO S H, ZHANG M, et al. Coupling effects of combined thermal desorption and stabilisation on stability of cadmium in the soil[J]. Environmental Pollution,2022,310:119905. ⊗ doi: 10.1016/j.envpol.2022.119905
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  41
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 录用日期:  2023-08-15
  • 修回日期:  2023-05-14

目录

    /

    返回文章
    返回