留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安徽某焦化污染场地生物泥浆反应器中试研究案例

李霏 丁浩然 杨乐巍 刘渊文 王恒 张岳 李书鹏 陈成 田德金

李霏,丁浩然,杨乐巍,等.安徽某焦化污染场地生物泥浆反应器中试研究案例[J].环境工程技术学报,2023,13(5):1725-1731 doi: 10.12153/j.issn.1674-991X.20230145
引用本文: 李霏,丁浩然,杨乐巍,等.安徽某焦化污染场地生物泥浆反应器中试研究案例[J].环境工程技术学报,2023,13(5):1725-1731 doi: 10.12153/j.issn.1674-991X.20230145
LI F,DING H R,YANG Y W,et al.Field testing of pilot-scale bioslurry reactor for coking contaminated site: a case study in Anhui Province[J].Journal of Environmental Engineering Technology,2023,13(5):1725-1731 doi: 10.12153/j.issn.1674-991X.20230145
Citation: LI F,DING H R,YANG Y W,et al.Field testing of pilot-scale bioslurry reactor for coking contaminated site: a case study in Anhui Province[J].Journal of Environmental Engineering Technology,2023,13(5):1725-1731 doi: 10.12153/j.issn.1674-991X.20230145

安徽某焦化污染场地生物泥浆反应器中试研究案例

doi: 10.12153/j.issn.1674-991X.20230145
基金项目: 国家重点研发计划项目(2020YFC1807905)
详细信息
    作者简介:

    李霏(1989—),男,博士,主要从事环境微生物方面的研究,lifei@bceer.com

    通讯作者:

    杨乐巍(1972—),男,正高级工程师,博士,主要从事土壤及地下水修复研究,yangyuewei@bceer.com

  • 中图分类号: X53

Field testing of pilot-scale bioslurry reactor for coking contaminated site: a case study in Anhui Province

  • 摘要:

    多环芳烃(PAHs)尤其是高环PAHs作为焦化污染场地的特征污染物,是一种高毒性、难降解的污染物。生物泥浆生物反应器技术由于具有较高的可调控性,且对难溶解有机物的去除效果好,是一种具有工程化前景的土壤修复工艺。采用自主研发的1 m3泥浆反应罐和商业化的PAHs降解菌剂,在代表性污染土壤进行中试试验,探索了接种菌剂后微生物群落结构变化、优化含固率和微生物反应关键参数的波动范围。结果表明:微生物在营养物质的刺激下,第3~6周快速增殖,其中HydrogenophagaSphingomonadaceaePseudomonas等菌属增殖明显,可能参与了PAHs的降解;具有代表性的高环PAHs污染物苯并[a]蒽、苯并[b]荧蒽、苯并[a]芘浓度从几倍于GB 36600—2018《土壤环境质量 建设用地土壤污染风险管控标准(试行)》一类建设用地的管控目标值降至修复目标值以下。针对国内缺少实际场地中试规模数据的问题,获得可靠的泥浆反应器运行数据,有助于推动泥浆生物反应器技术在国内向工程化规模扩展。

     

  • 图  1  菌剂群落结构

    Figure  1.  Microbial community structure

    图  2  反应罐中污染物浓度监测

    Figure  2.  Contaminants monitoring in bioreactor tanks

    图  3  反应罐中石油烃降解

    Figure  3.  Degradation of petroleum hydrocarbons in bioreactor tanks

    图  4  反应罐中微生物多样性监测

    Figure  4.  Microbial diversity monitoring in bioreactor tanks

    图  5  反应罐中的重要参数

    Figure  5.  Key parameters of the reactor tanks

    表  1  试验土壤污染情况

    Table  1.   Contamination level of sampling soil mg/kg 

    污染物样品1样品2一类建设用地标准
    Zn51.045.015 017
    Pb29.028.0400
    As14.715.020
    石油烃408.0460.0826
    苯并[a]蒽12.115.55.5
    苯并[b]荧蒽31.740.15.5
    苯并[k]荧蒽31.039.255
    苯并[a]芘20.825.90.55
    二苯并[a,h]蒽6.79.30.55
    茚并[1,2,3-cd]芘23.027.85.5
    下载: 导出CSV

    表  2  菌剂多样性分析

    Table  2.   Analysis of microbial diversity

    样品生物多样性指数
    ACEChao1SimpsonShannon
    空白对照309.53309.380.492.51
    T50281.03280.640.140.78
    T100283.77285.610.110.67
    T200284.54285.880.120.68
    下载: 导出CSV
  • [1] 李伟, 王华伟, 孙英杰, 等. 焦化场地多环芳烃(PAHs)污染特征和修复技术研究进展[C]//中国环境科学学会2022年科学技术年会: 环境工程技术创新与应用分会场论文集(一). 北京: 中国环境科学学会, 2022.
    [2] TUHULOULA A, ALTWAY A, JULIASTUTI S R, et al. Biodegradation of soils contaminated with naphthalene in petroleum hydrocarbons using bioslurry reactors[J]. IOP Conference Series: Earth and Environmental Science,2018,175:012014. doi: 10.1088/1755-1315/175/1/012014
    [3] 刘磊, 李习武, 刘双江, 等.降解多环芳烃的菌株Gordonia sp. He4的分离鉴定及其在菲污染土壤修复过程中的动态变化[J]. 环境科学,2007,28(3):617-622.

    LIU L, LI X W, LIU S J, et al. Isolation and identification of a PAHs-degrading strain Gordonia sp. He4 and its dynamics during bioremediation of phenanthrene polluted soil[J]. Chinese Journal of Environmental Science,2007,28(3):617-622.
    [4] 钱林波, 元妙新, 陈宝梁.固定化微生物技术修复PAHs污染土壤的研究进展[J]. 环境科学,2012,33(5):1767-1776.

    QIAN L B, YUAN M X, CHEN B L. Research progress about bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique[J]. Chinese Journal of Environmental Science,2012,33(5):1767-1776.
    [5] 王凌文. 表面活性剂强化微生物修复典型有机物污染场地/土壤[D]. 杭州: 浙江大学, 2016.
    [6] FORJÁN R, LORES I, SIERRA C, et al. Bioaugmentation treatment of a PAH-polluted soil in a slurry bioreactor[J]. Applied Sciences,2020,10(8):2837. doi: 10.3390/app10082837
    [7] PELAEZ A I, LORES I, SOTRES A, et al. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil[J]. Environmental Pollution,2013,181:190-199. doi: 10.1016/j.envpol.2013.06.004
    [8] 曹斐姝, 陈建平, 谢冬燕, 等.泥浆生物反应器在土壤修复中的应用[J]. 环境工程,2022,40(4):174-181.

    CAO F S, CHEN J P, XIE D Y, et al. Application of slurry bioreactor in soil remediation[J]. Environmental Engineering,2022,40(4):174-181.
    [9] LAUNEN L A, BUGGS V H, EASTEP M E, et al. Bioremediation of polyaromatic hydrocarbon-contaminated sediments in aerated bioslurry reactors[J]. Bioremediation Journal,2002,6(2):125-141. doi: 10.1080/10588330208951209
    [10] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology,2019,37(8):852-857. doi: 10.1038/s41587-019-0209-9
    [11] CALLAHAN B J, McMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581-583. doi: 10.1038/nmeth.3869
    [12] GRICE E A, KONG H H, CONLAN S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science,2009,324:1190-1192. doi: 10.1126/science.1171700
    [13] 侯晓鹏, 李春华, 叶春, 等.不同电子受体作用下微生物降解多环芳烃研究进展[J]. 环境工程技术学报,2016,6(1):78-84.

    HOU X P, LI C H, YE C, et al. Research progress of biodegradation of polycyclic aromatic hydrocarbons with amendment of different electron acceptors[J]. Journal of Environmental Engineering Technology,2016,6(1):78-84.
    [14] VERA A, WILSON F P, CUPPLES A M. Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites[J]. Applied Microbiology and Biotechnology,2022,106(2):835-853. doi: 10.1007/s00253-021-11756-3
    [15] LI Y T, ZHENG B P, YANG Y H, et al. Soil microbial ecological effect of shale gas oil-based drilling cuttings pyrolysis residue used as soil covering material[J]. Journal of Hazardous Materials,2022,436:129231. doi: 10.1016/j.jhazmat.2022.129231
    [16] DOSANI M, PLATT J. Pilot-scale demonstration of a slurry-phase biological reactor for creosote-contaminated soil: applications analysis report[R]. Cincinnati: IT Corp, 1993.
    [17] YU C C, CHANG T C, LIAO C S, et al. A comparison of the microbial community and functional genes present in free-living and soil particle-attached bacteria from an aerobic bioslurry reactor treating high-molecular-weight PAHs[J]. Sustainability,2019,11(4):1088. doi: 10.3390/su11041088
    [18] SMITH E, THAVAMANI P, RAMADASS K, et al. Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques[J]. International Biodeterioration & Biodegradation,2015,101:56-65.
    [19] AHMED F, FAKHRUDDIN A. A review on environmental contamination of petroleum hydrocarbons and its biodegradation[J]. International Journal of Environmental Sciences & Natural Resources,2018,11(3):1-7.
    [20] YAN Z S, ZHANG Y, WU H F, et al. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a] pyrene biodegradation[J]. RSC Advances,2017,7(74):46690-46698. doi: 10.1039/C7RA09274A
    [21] 王荔, 张腾飞, 杨苏才, 等.焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报,2021,11(4):720-726.

    WANG L, ZHANG T F, YANG S C, et al. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology,2021,11(4):720-726.
    [22] SWATI, MONI K, POOJA G, et al. Evaluation of a biosurfactant producing bacterial strain Pseudomonas sp. ISTPY2 for efficient pyrene degradation and landfill soil bioremediation through soil microcosm and proteomic studies[J]. Bioresource Technology Reports,2020,12:100607. doi: 10.1016/j.biteb.2020.100607
    [23] LI L, SHEN X W, ZHAO C C, et al. Biodegradation of dibenzothiophene by efficient Pseudomonas sp. LKY-5 with the production of a biosurfactant[J]. Ecotoxicology and Environmental Safety,2019,176:50-57. doi: 10.1016/j.ecoenv.2019.03.070
    [24] KUMARI S, MANGWANI N, DAS S. Synergistic effect of quorum sensing genes in biofilm development and PAHs degradation by a marine bacterium[J]. Bioengineered,2016,7(3):205-211. doi: 10.1080/21655979.2016.1174797
    [25] STOLZ A. Molecular characteristics of xenobiotic-degrading sphingomonads[J]. Applied Microbiology and Biotechnology,2009,81(5):793-811. doi: 10.1007/s00253-008-1752-3
    [26] OBAYORI O S, SALAM L B. Degradation of polycyclic aromatic hydrocarbons: role of plasmids[J]. Scientific Research and Essays,2010,5:4093-4106.
    [27] KERTESZ M A, KAWASAKI A, STOLZ A. Aerobic hydrocarbon-degrading alphaproteobacteria: sphingomonadales[C]//MCGENITY T. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Cham: Springer, 2019: 105-124.
    [28] PINYAKONG O, HABE H, OMORI T. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs)[J]. The Journal of General and Applied Microbiology,2003,49(1):1-19. doi: 10.2323/jgam.49.1
    [29] LAFORTUNE I, JUTEAU P, DÉZIEL E, et al. Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem[J]. Microbial Ecology,2009,57(3):455-468. doi: 10.1007/s00248-008-9417-4
    [30] 许华夏, 宋玉芳, 井欣, 等.生物泥浆反应器中微生物数量变化与PAHs降解[J]. 应用与环境生物学报,2000,6(5):452-456.

    XU H X, SONG Y F, JING X, et al. The variation of amount of microbes and its relations with the degradation of pahs in the bioslurry reactor[J]. Chinese Journal of Applied and Environmental Biology,2000,6(5):452-456. □
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  85
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 录用日期:  2023-06-12
  • 修回日期:  2023-04-10

目录

    /

    返回文章
    返回