留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞灰哌嗪类螯合剂固化/稳定化体中重金属释放机理

慕宗宇 杨玉飞 王菲 郭明坤 黄启飞 杨延梅 罗中力

慕宗宇,杨玉飞,王菲,等.飞灰哌嗪类螯合剂固化/稳定化体中重金属释放机理[J].环境工程技术学报,2024,14(1):174-183 doi: 10.12153/j.issn.1674-991X.20230106
引用本文: 慕宗宇,杨玉飞,王菲,等.飞灰哌嗪类螯合剂固化/稳定化体中重金属释放机理[J].环境工程技术学报,2024,14(1):174-183 doi: 10.12153/j.issn.1674-991X.20230106
MU Z Y,YANG Y F,WANG F,et al.Mechanism of release of heavy metals in solidified/stabilized bodies of fly ash piperazine chelating agents[J].Journal of Environmental Engineering Technology,2024,14(1):174-183 doi: 10.12153/j.issn.1674-991X.20230106
Citation: MU Z Y,YANG Y F,WANG F,et al.Mechanism of release of heavy metals in solidified/stabilized bodies of fly ash piperazine chelating agents[J].Journal of Environmental Engineering Technology,2024,14(1):174-183 doi: 10.12153/j.issn.1674-991X.20230106

飞灰哌嗪类螯合剂固化/稳定化体中重金属释放机理

doi: 10.12153/j.issn.1674-991X.20230106
基金项目: 国家重点研发计划项目(2021YFE0112100)
详细信息
    作者简介:

    慕宗宇(1997—),女,硕士研究生,主要从事固体废物管理与处理处置技术研究,744385213@qq.com

    通讯作者:

    王菲(1991—),女,助理研究员,主要从事危险废物鉴别研究,wangfei@craes.org.cn

  • 中图分类号: X705

Mechanism of release of heavy metals in solidified/stabilized bodies of fly ash piperazine chelating agents

  • 摘要:

    生活垃圾焚烧飞灰中重金属对环境产生较大危害,而对其的固化/稳定化成为飞灰处理处置中的首要问题。用普通硅酸盐水泥处理垃圾焚烧飞灰较为普遍,为降低能耗提高产品效益,研究了新型大分子有机螯合剂哌嗪-N,N'-双二硫代羧酸钠(TS300)协同不同用量的水泥(30%、40%)固化飞灰中重金属的能力。探究了TS300对目标重金属Zn、Cd、Cr、Pb、Ni的浸出浓度、化学形态和微观结构的影响。结果表明:TS300协同水泥可有效固定飞灰中的重金属,降低浸出浓度60%以上;重金属Cr、Cd、Pb、Ni经固化后的化学形态整体向更稳定的方向移动;随着TS300和水泥添加量的增大,固化块晶体组成更稳定、抗酸强度上升且孔隙致密度增加,其中水泥添加量40%、TS300添加量8%的固化块重金属浸出浓度最低,固化效果最佳。综上,探究TS300协同水泥固化/稳定化重金属的效果和机理,有利于探究不同飞灰处理处置方式的优劣,分析水泥协同药剂固化稳定化飞灰重金属的效果,降低填埋场渗滤液的环境风险,为后续飞灰重金属螯合剂的研发提供新思路。

     

  • 图  1  TS300螯合剂合成路线

    Figure  1.  Synthesis formula of TS300 chelating agent

    图  2  不同固化块中Cr、Pb、Ni、Zn和Cd的浸出浓度

    Figure  2.  Leaching concentrations of Cr, Pb, Ni, Zn and Cd in different solidified blocks

    图  3  重金属化学形态分析

    Figure  3.  Chemical speciation analysis of heavy metals

    图  4  固化块的XRD分析

    Figure  4.  XRD analysis of cured block

    图  5  TS300和固化块的红外光谱分析

    Figure  5.  Infrared spectrum analysis of TS300 and cured block

    图  6  固化块SEM和EDS分析

    Figure  6.  SEM and EDS analysis of cured block

    图  7  固化块孔隙分布曲线

    Figure  7.  Pore distribution curve of solidified block

    表  1  飞灰中主要重金属浓度

    Table  1.   Main heavy metal contents in fly ash mg/kg 

    ZnPbCdCrNiHgBe
    4 050.33±29.91713.36±24.23188.41±3.9958.33±1.5731.18±0.9227.01±0.530.22±0.06
    下载: 导出CSV

    表  2  固化块配比及参数

    Table  2.   Curing block ratio and parameters

    样品编号 TS300用量/g 水泥用量/g 飞灰用量/g TS300占比/%
    F0 0 180 600 0
    F1 6 180 600 1
    F4 24 180 600 4
    F8 48 180 600 8
    G0 0 240 600 0
    G1 6 240 600 1
    G4 24 240 600 4
    G8 48 240 600 8
    下载: 导出CSV
  • [1] LU J W, ZHANG S K, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions[J]. Waste Management,2017,69:170-186. doi: 10.1016/j.wasman.2017.04.014
    [2] 郭梦茹, 张冰如, 席佳锐, 等. 垃圾分类前后焚烧飞灰的理化性质及重金属污染特性[J]. 环境工程技术学报,2022,12(3):843-850.

    GUO M R, ZHANG B R, XI J R, et al. Physicochemical properties and heavy metal pollution characteristics of incineration fly ash before and after refuse classification[J]. Journal of Environmental Engineering Technology,2022,12(3):843-850.
    [3] 吴昊, 刘宏博, 田书磊, 等. 城市生活垃圾焚烧飞灰利用处置现状及环境管理[J]. 环境工程技术学报,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083

    WU H, LIU H B, TIAN S L, et al. Current situation for utilization and disposal and environmental management of fly ash from municipal solid waste incineration[J]. Journal of Environmental Engineering Technology,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083
    [4] MAO Y P, WU H, WANG W L, et al. Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material[J]. Journal of Hazardous Materials,2020,385:121580. doi: 10.1016/j.jhazmat.2019.121580
    [5] MOLLICA G J G, BALESTIERI J A P. Is it worth generating energy with garbage: defining a carbon tax to encourage waste-to-energy cycles[J]. Applied Thermal Engineering,2020,173:115195. doi: 10.1016/j.applthermaleng.2020.115195
    [6] VAVVA C, VOUTSAS E, MAGOULAS K. Process development for chemical stabilization of fly ash from municipal solid waste incineration[J]. Chemical Engineering Research and Design,2017,125:57-71. doi: 10.1016/j.cherd.2017.06.021
    [7] 王庆旭, 李松, 吴昊, 等. 纳滤膜浓缩液淋滤焚烧飞灰过程中氯盐溶出及重金属的迁移特性[J]. 环境科学研究,2022,35(8):1958-1965. doi: 10.13198/j.issn.1001-6929.2022.04.01

    WANG Q X, LI S, WU H, et al. Characteristics of chloride salt dissolution and heavy metal migration during leaching of municipal solid waste incineration fly ash with membrane concentrate[J]. Research of Environmental Sciences,2022,35(8):1958-1965. doi: 10.13198/j.issn.1001-6929.2022.04.01
    [8] WANG P, HU Y A, CHENG H F. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China[J]. Environmental Pollution,2019,252:461-475. doi: 10.1016/j.envpol.2019.04.082
    [9] BIE R S, CHEN P, SONG X F, et al. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J]. Journal of the Energy Institute,2016,89(4):704-712. doi: 10.1016/j.joei.2015.04.006
    [10] LIU S S, ZHAO S Y, LIANG Z H, et al. Perfluoroalkyl substances (PFASs) in leachate, fly ash, and bottom ash from waste incineration plants: implications for the environmental release of PFAS[J]. Science of the Total Environment,2021,795:148468. doi: 10.1016/j.scitotenv.2021.148468
    [11] MINOCHA A K, JAIN N, VERMA C L. Effect of inorganic materials on the solidification of heavy metal sludge[J]. Cement and Concrete Research,2003,33(10):1695-1701. doi: 10.1016/S0008-8846(03)00146-7
    [12] BENASSI L, PASQUALI M, ZANOLETTI A, et al. Chemical stabilization of municipal solid waste incineration fly ash without any commercial chemicals: first pilot-plant scaling up[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5561-5569.
    [13] BENASSI L, ZANOLETTI A, DEPERO L E, et al. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals[J]. Journal of Environmental Management,2019,245:464-470.
    [14] LI J T, ZENG M, JI W X. Characteristics of the cement-solidified municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research,2018,25(36):36736-36744. doi: 10.1007/s11356-018-3600-z
    [15] WANG F H, ZHANG F, CHEN Y J, et al. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash[J]. Journal of Hazardous Materials,2015,300:451-458. doi: 10.1016/j.jhazmat.2015.07.037
    [16] CHEN S S, HUANG J L, XIAO T T, et al. Carbon emissions under different domestic waste treatment modes induced by garbage classification: case study in pilot communities in Shanghai, China[J]. Science of the Total Environment,2020,717:137193. doi: 10.1016/j.scitotenv.2020.137193
    [17] MA Y, WANG G, YE G, et al. A comparative study on the pore structure of alkali-activated fly ash evaluated by mercury intrusion porosimetry, N2 adsorption and image analysis[J]. Journal of Materials Science,2018,53(8):5958-5972. doi: 10.1007/s10853-017-1965-x
    [18] CUDJOE D, ACQUAH P M. Environmental impact analysis of municipal solid waste incineration in African countries[J]. Chemosphere,2021,265:129186. doi: 10.1016/j.chemosphere.2020.129186
    [19] LUO Z T, TANG C B, HAO Y H, et al. Solidification/stabilization of heavy metals and its efficiency in lead–zinc tailings using different chemical agents[J]. Environmental Technology,2022,43(11):1613-1623. doi: 10.1080/09593330.2020.1845817
    [20] ZHU J R, ZHENG H L, JIANG Z Z, et al. Synthesis and characterization of a dewatering reagent: cationic polyacrylamide (P(AM–DMC–DAC)) for activated sludge dewatering treatment[J]. Desalination and Water Treatment,2013,51(13/14/15):2791-2801.
    [21] BHATTACHARJEE A, MANDAL H, ROY M, et al. Microstructural and magnetic characterization of fly ash from Kolaghat Thermal Power Plant in West Bengal, India[J]. Journal of Magnetism and Magnetic Materials,2011,323(23):3007-3012. doi: 10.1016/j.jmmm.2011.06.036
    [22] XUE F, WEI X, DONG J H, et al. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations[J]. Journal of Materials Science & Technology,2019,35(4):596-603.
    [23] PADMI T, TANAKA M, AOYAMA I. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: heavy metals and ecotoxicity evaluation[J]. Waste Management,2009,29(7):2065-2070. doi: 10.1016/j.wasman.2009.03.005
    [24] MA W C, CHEN D M, PAN M H, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management,2019,247:169-177.
    [25] HU L, WU Z, XU J X, et al. Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid[J]. Chemical Engineering Journal,2014,244:137-144. doi: 10.1016/j.cej.2014.01.057
    [26] LIU Y Q, SHI J J. Corrosion resistance of carbon steel in alkaline concrete pore solutions containing phytate and chloride ions[J]. Corrosion Science,2022,205:110451. doi: 10.1016/j.corsci.2022.110451
    [27] DU B, LI J T, FANG W, et al. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash[J]. Environmental Pollution,2019,250:68-78. doi: 10.1016/j.envpol.2019.03.124
    [28] ZHAO Y C, SONG L J, LI G J. Chemical stabilization of MSW incinerator fly ashes[J]. Journal of Hazardous Materials,2002,95(1/2):47-63.
    [29] ZHANG Q, YE G, KOENDERS E. Investigation of the structure of heated Portland cement paste by using various techniques[J]. Construction and Building Materials,2013,38:1040-1050. doi: 10.1016/j.conbuildmat.2012.09.071
    [30] SHAO Y, HOU H B, WANG G X, et al. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb[J]. Frontiers of Environmental Science & Engineering,2016,10(1):192-200.
    [31] XU J Z, ZHOU Y L, CHANG Q, et al. Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers[J]. Materials Letters,2006,60(6):820-822. doi: 10.1016/j.matlet.2005.10.019
    [32] ECKE H, SAKANAKURA H, MATSUTO T, et al. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan[J]. Waste Management and Research,2000,18(1):41-51. doi: 10.1177/0734242X0001800106
    [33] MA Y, LIU Z H, XU Y Q, et al. Remediating potentially toxic metal and organic co-contamination of soil by combining in situ solidification/stabilization and chemical oxidation: efficacy, mechanism, and evaluation[J]. International Journal of Environmental Research and Public Health,2018,15(11):2595. doi: 10.3390/ijerph15112595
    [34] SANTOS A R, DO ROSÁRIO VEIGA M, SANTOS SILVA A, et al. Microstructure as a critical factor of cement mortars' behaviour: the effect of aggregates' properties[J]. Cement and Concrete Composites,2020,111:103628. doi: 10.1016/j.cemconcomp.2020.103628
    [35] ZHAN X Y, KIRKELUND G M. Electrodialytic remediation of municipal solid waste incineration fly ash as pre-treatment before geopolymerisation with coal fly ash[J]. Journal of Hazardous Materials,2021,412:125220. doi: 10.1016/j.jhazmat.2021.125220
    [36] LIU B, YANG Q W, ZHANG S G. Integrated utilization of municipal solid waste incineration fly ash and bottom ash for preparation of foam glass-ceramics[J]. Rare Metals,2019,38(10):914-921. doi: 10.1007/s12598-019-01314-2
    [37] KAUR R, GOYAL D. Mineralogical studies of coal fly ash for soil application in agriculture[J]. Particulate Science and Technology,2015,33(1):76-80. doi: 10.1080/02726351.2014.938378
    [38] ZHANG Y A, WANG L J, TANG B T, et al. Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure[J]. Applied Energy,2016,184:241-246. doi: 10.1016/j.apenergy.2016.10.021
    [39] FAN C C, WANG B M, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J]. Journal of Cleaner Production,2021,319:128790. doi: 10.1016/j.jclepro.2021.128790
    [40] BUI VIET D, CHAN W P, PHUA Z H, et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials[J]. Journal of Hazardous Materials,2020,398:122906. doi: 10.1016/j.jhazmat.2020.122906
    [41] XIE K, HU H Y, XU S H, et al. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes[J]. Waste Management,2020,103:334-341. doi: 10.1016/j.wasman.2019.12.047
    [42] 宋珍霞, 王里奥, 林祥, 等. 城市垃圾焚烧飞灰特性及水泥固化试验研究[J]. 环境科学研究,2008,21(4):163-168.

    SONG Z X, WANG L A, LIN X, et al. Experimental study on properties and cement solidification of municipal solid waste incineration fly ash[J]. Research of Environmental Sciences,2008,21(4):163-168.
    [43] WANG Y T, XU H Y, CHEN C, et al. Enhanced solidification/stabilization of lead in MSWI fly ash treatment and disposal by gelatinized sticky rice[J]. Environmental Technology,2021,42(10):1531-1541. doi: 10.1080/09593330.2019.1673828
    [44] ZHAO Y K, WANG Z Y, ZHANG B R, et al. Performance and mechanism of copper removal from wastewater by sodium tetraethylenepentamine-N, N', N'', N''', N''''-pentadithiocarboxylic acid[J]. Journal of Molecular Structure,2021,1242:130727. doi: 10.1016/j.molstruc.2021.130727
    [45] ZHANG M L, GUO M R, ZHANG B R, et al. Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer[J]. Waste Management,2020,105:289-298. doi: 10.1016/j.wasman.2020.02.004
    [46] TIAN S C, JIANG J G, ZHANG C. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization[J]. Journal of Hazardous Materials,2011,192(3):1609-1615. doi: 10.1016/j.jhazmat.2011.06.085
    [47] PRABHAKAR A K, CADIAM MOHAN B, TAY T S, et al. Incinerated sewage sludge bottom ash: chemical processing, leaching patterns and toxicity testing[J]. Journal of Hazardous Materials,2021,402:123350. doi: 10.1016/j.jhazmat.2020.123350
    [48] SUN Y Y, XU C B, YANG W J, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid-waste incineration fly ash: behaviors and mechanisms[J]. Journal of the Chinese Chemical Society,2019,66(2):188-196. doi: 10.1002/jccs.201700406
    [49] MEHTA A, SIDDIQUE R. Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers[J]. Construction and Building Materials,2017,141:325-334. doi: 10.1016/j.conbuildmat.2017.03.031
    [50] HUANG Z X, FAN M H, TIAN H J. Rare earth elements of fly ash from Wyoming's Powder River Basin coal[J]. Journal of Rare Earths,2020,38(2):219-226. doi: 10.1016/j.jre.2019.05.004
    [51] LEE B, LEE S, KIM B, et al. Advanced characterization of IGCC slag by automated SEM-EDS analysis[J]. Waste Management,2020,116:140-146. doi: 10.1016/j.wasman.2020.08.001
    [52] KUMAR S, KRISTÁLY F, MUCSI G. Geopolymerisation behaviour of size fractioned fly ash[J]. Advanced Powder Technology,2015,26(1):24-30. doi: 10.1016/j.apt.2014.09.001
    [53] WANG T, ISHIDA T, GU R. A study of the influence of crystal component on the reactivity of low-calcium fly ash in alkaline conditions based on SEM-EDS[J]. Construction and Building Materials,2020,243:118227. doi: 10.1016/j.conbuildmat.2020.118227
    [54] WANG T, ISHIDA T, GU R, et al. Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste[J]. Construction and Building Materials,2021,267:121012. doi: 10.1016/j.conbuildmat.2020.121012
    [55] 黄文有, 孟月东, 陈明周, 等. 等离子体熔融生活垃圾焚烧飞灰中试试验[J]. 环境工程技术学报,2016,6(5):501-508.

    HUANG W Y, MENG Y D, CHEN M Z, et al. Pilot scale study on plasma vitrification of municipal waste incinerator fly ash[J]. Journal of Environmental Engineering Technology,2016,6(5):501-508.
    [56] JOHANSEN V, ANDERSEN P J. Particle packing and concrete properties[J]. Materials Science of Concrete Ⅱ,1991,88:246-271.
    [57] GOLTERMANN P, JOHANSEN V , PALBØL L. Packing of aggregates: an alternative tool to determine the optimal aggregate mix[J]. ACI Materials Journal, 1997, 94(5): 435-443.
    [58] ZHAO H T, QIN X, LIU J P, et al. Pore structure characterization of early-age cement pastes blended with high-volume fly ash[J]. Construction and Building Materials,2018,189:934-946. doi: 10.1016/j.conbuildmat.2018.09.023
    [59] NEDELJKOVIĆ M, ŠAVIJA B, ZUO Y B, et al. Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes[J]. Construction and Building Materials,2018,161:687-704. □ doi: 10.1016/j.conbuildmat.2017.12.005
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  45
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 录用日期:  2023-07-26
  • 修回日期:  2023-07-18

目录

    /

    返回文章
    返回