留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实测的超低排放燃煤电厂砷、硒、铅迁移与排放特性

陈夏盟 王华生 曹元明 邓双 张辰 龙红艳 郭凤艳

陈夏盟,王华生,曹元明,等.基于实测的超低排放燃煤电厂砷、硒、铅迁移与排放特性[J].环境工程技术学报,2023,13(3):973-981 doi: 10.12153/j.issn.1674-991X.20230076
引用本文: 陈夏盟,王华生,曹元明,等.基于实测的超低排放燃煤电厂砷、硒、铅迁移与排放特性[J].环境工程技术学报,2023,13(3):973-981 doi: 10.12153/j.issn.1674-991X.20230076
CHEN X M,WANG H S,CAO Y M,et al.Investigation on migrations and fates of arsenic, selenium and lead in ultra-low emission coal-fired power plants based on field measurement[J].Journal of Environmental Engineering Technology,2023,13(3):973-981 doi: 10.12153/j.issn.1674-991X.20230076
Citation: CHEN X M,WANG H S,CAO Y M,et al.Investigation on migrations and fates of arsenic, selenium and lead in ultra-low emission coal-fired power plants based on field measurement[J].Journal of Environmental Engineering Technology,2023,13(3):973-981 doi: 10.12153/j.issn.1674-991X.20230076

基于实测的超低排放燃煤电厂砷、硒、铅迁移与排放特性

doi: 10.12153/j.issn.1674-991X.20230076
基金项目: 国家重点研发计划项目(2018YFB0605101)
详细信息
    作者简介:

    陈夏盟(1993—),男,硕士研究生,主要从事大气污染控制研究,282498311@qq.com

    通讯作者:

    邓双(1972—),女,研究员,主要从事大气污染控制技术及对策研究,dengshuang@craes.org.cn

  • 中图分类号: X701

Investigation on migrations and fates of arsenic, selenium and lead in ultra-low emission coal-fired power plants based on field measurement

  • 摘要:

    选择煤粉炉(PC)和循环流化床(CFB)超低排放燃煤电厂开展实测研究,同步采集烟气净化装置(APCDs)前后烟气样品进行分析;并同时采集分析入炉煤、飞灰、底渣、省煤器(LTE)灰、脱硫浆液和湿式电除尘器(WESP)废水等样品,以揭示砷(As)、硒(Se)和铅(Pb)迁移与排放特性。结果表明:两家电厂APCDs对烟气中As、Se和Pb的总协同脱除率达到96%,净烟气中污染物浓度低,分别为0.13~0.49、1.05~2.15和0.86~3.19 μg/m3;不同APCDs的协同脱除率存在较大差异,其中布袋除尘器(FF)最高(99.56%~99.74%),静电除尘器(ESP)次之(85.61%~98.44%),湿法烟气脱硫(WFGD)的脱除率波动较大,WESP脱除率为11.61%~55.08%。燃煤中As、Se和Pb大部分迁移到飞灰中,占比为74.38%~95.24%;CFB底渣占比为3.51%~24.08%;LTE灰占比为5.85%~12.11%;脱硫浆液中均低于6%;WESP废水和出口烟气中占比最低,分别为0.68%和0.62%。相对于煤粉炉,循环流化床电厂底渣中As和Pb富集性更高;而对于Se,则燃烧方式无明显影响,但其在净烟气中占比高于As和Pb。

     

  • 图  1  采样点示意图

    Figure  1.  Schematics of the sampling sites

    图  2  电厂A、B系统的重金属As、Se、Pb的质量平衡率

    Figure  2.  Mass balance rates of heavy metals (i.e, As, Se, and Pb) in power plant A and B systems

    图  3  APCDs的协同脱除率及总脱除率

    Figure  3.  Synergistic removal efficiency and total removal efficiency of APCDs

    图  4  燃煤电厂A和B重金属As、Se和Pb的迁移分布

    注:图中数字为重金属分布量,单位为g/h。

    Figure  4.  Schematics of migration for As, Se, and Pb in studied power plants

    图  5  燃煤电厂中As、Se和Pb的占比

    Figure  5.  Mass distribution of As, Se, and Pb in studied power plants

    表  1  燃煤电厂基本情况

    Table  1.   Basic situation of the studied power plants

    电厂炉型机组容量/MW负荷/%烟气脱硝烟气除尘烟气脱硫超低排放烟气净化工艺流程
    A煤粉炉30075±5SCRESP、WESPWFGDSCR+ESP+WFGD+WESP
    B循环流化床35075±5SNCRFF、WESPWFGD、LIFACLIFAC+SNCR+FF+WFGD+WESP
      注:SCR为选择性催化还原脱硝;SNCR为选择性非催化还原脱硝;EPS为静电除尘;FF为布袋除尘;WESP为湿式电除尘;WFGD为湿法脱硫;LIFAC为炉内喷钙脱硫。
    下载: 导出CSV

    表  2  煤样的工业分析及重金属浓度

    Table  2.   Industrial analysis and heavy metals contents of coal samples

    电厂Mt/%Mad/%Aar/%Vdaf/%Qnet.ar/(MJ/kg)As浓度/(mg/kg)Se浓度/(mg/kg)Pb浓度/(mg/kg)
    A16.2010.2912.8037.0521.371.391.0610.94
    B6.600.7746.3516.833.016.834.9816.79
      注:Mt为全水分;Mad为空气干燥基水分;Aar为收到基灰分;Vdaf为干燥无灰基挥发分;Qnet.ar为收到基低位发热量。
    下载: 导出CSV

    表  3  烟气中As、Se和Pb浓度

    Table  3.   Mass concentration of heavy metals (i.e. As, Se, and Pb) in flue gas μg/m3 

    电厂重金属SCR前除尘前除尘后WFGD后WESP后US EPA排
    放限值[51]
    AAs103.6097.836.480.160.132.7
    Se58.0450.577.284.802.158.2
    Pb816.27702.6110.951.120.862.7
    BAs491.481.410.960.492.7
    Se290.741.281.191.058.2
    Pb2 081.575.323.723.192.7
      注:—表示无数据。
    下载: 导出CSV
  • [1] 国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
    [2] 史燕红, 吴华成.燃煤电厂重金属铅排放特性研究进展[J]. 热力发电,2016,45(1):1-8. doi: 10.3969/j.issn.1002-3364.2016.01.001

    SHI Y H, WU H C. Emission characteristics of Pb in coal-fired plants: research development[J]. Thermal Power Generation,2016,45(1):1-8. doi: 10.3969/j.issn.1002-3364.2016.01.001
    [3] GINGERICH D B, ZHAO Y F, MAUTER M S. Environmentally significant shifts in trace element emissions from coal plants complying with the 1990 Clean Air Act Amendments[J]. Energy Policy,2019,132:1206-1215. doi: 10.1016/j.enpol.2019.07.003
    [4] SUN X D, GINGERICH D B, AZEVEDO I L, et al. Trace element mass flow rates from U. S. coal fired power plants[J]. Environmental Science & Technology,2019,53(10):5585-5595.
    [5] da SILVA E B, LI S W, de OLIVEIRA L M, et al. Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios[J]. Journal of Hazardous Materials,2018,341:66-74. doi: 10.1016/j.jhazmat.2017.07.010
    [6] 熊传芳, 张征宇, 万梅, 等.嘉兴市大气PM2.5中金属元素污染特征、生态风险评价及来源分析[J]. 环境工程技术学报,2023,13(1):96-104.

    XIONG C F, ZHANG Z Y, WAN M, et al. Pollution characteristics, ecological risk assessment and source analysis of metal elements in atmospheric PM2.5 in Jiaxing City[J]. Journal of Environmental Engineering Technology,2023,13(1):96-104.
    [7] 邹天森, 康文婷, 张金良, 等.我国主要城市大气重金属的污染水平及分布特征[J]. 环境科学研究,2015,28(7):1053-1061.

    ZOU T S, KANG W T, ZHANG J L, et al. Concentrations and distribution characteristics of atmospheric heavy metals in urban areas of China[J]. Research of Environmental Sciences,2015,28(7):1053-1061.
    [8] GEORGE A, SHEN B X, KANG D R. Emission control strategies of hazardous trace elements from coal-fired power plants in China[J]. Journal of Environmental Sciences,2020,93:66-90. doi: 10.1016/j.jes.2020.02.025
    [9] TIAN K, WU Q M, LIU P, et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea[J]. Environment International,2020,136:105512. doi: 10.1016/j.envint.2020.105512
    [10] 吕占禄, 张金良, 邹天森, 等.燃煤电厂周边土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(6):720-731.

    LÜ Z L, ZHANG J L, ZOU T S, et al. Characteristics and evaluation of heavy metal pollution in soil around coal-fired power plants[J]. Journal of Environmental Engineering Technology,2019,9(6):720-731.
    [11] 郑灿利, 范雪璐, 董娴, 等.贵阳市秋冬季PM2.5中重金属污染特征、来源解析及健康风险评估[J]. 环境科学研究,2020,33(6):1376-1383.

    ZHENG C L, FAN X L, DONG X, et al. Characteristics, sources and health risk assessment of heavy metals in PM2.5 collected between autumn and winter in Guiyang City[J]. Research of Environmental Sciences,2020,33(6):1376-1383.
    [12] 朱法华, 许月阳, 孙尊强, 等.中国燃煤电厂超低排放和节能改造的实践与启示[J]. 中国电力,2021,54(4):1-8.

    ZHU F H, XU Y Y, SUN Z Q, et al. Practice and enlightenment of ultra-low emission and energy-saving retrofit of coal-fired power plants in China[J]. Electric Power,2021,54(4):1-8.
    [13] 向家涛, 黎俊廷, 周晓鸣, 等.燃煤烟气污控设备对挥发性有机物和常规污染物的协同控制特性[J]. 动力工程学报,2022,42(7):671-676.

    XIANG J T, LI J T, ZHOU X M, et al. Synergistic control characteristics of volatile organic compounds and conventional pollutants by air pollution control devices[J]. Journal of Chinese Society of Power Engineering,2022,42(7):671-676.
    [14] WANG C B, LIU H M, ZHANG Y, et al. Review of arsenic behavior during coal combustion: volatilization, transformation, emission and removal technologies[J]. Progress in Energy and Combustion Science,2018,68:1-28. doi: 10.1016/j.pecs.2018.04.001
    [15] ZHAO S L, DUAN Y F, TAN H Z, et al. Migration and emission characteristics of trace elements in a 660 MW coal-fired power plant of China[J]. Energy & Fuels,2016,30(7):5937-5944.
    [16] CHENG C M, HACK P, CHU P, et al. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems[J]. Energy & Fuels,2009,23(10):4805-4816.
    [17] WEN M N, WU Q R, LI G L, et al. Impact of ultra-low emission technology retrofit on the mercury emissions and cross-media transfer in coal-fired power plants[J]. Journal of Hazardous Materials,2020,396:122729. doi: 10.1016/j.jhazmat.2020.122729
    [18] SENIOR C L, TYREE C A, MEEKS N D, et al. Selenium partitioning and removal across a wet FGD scrubber at a coal-fired power plant[J]. Environmental Science & Technology,2015,49(24):14376-14382.
    [19] ZHAO Y C, YANG J P, MA S M, et al. Emission controls of mercury and other trace elements during coal combustion in China: a review[J]. International Geology Review,2018,60(5/6):638-670.
    [20] HAN L P, ZHAO Y, HAO R L. Arsenic emission and distribution characteristics in the ultra-low emission coal-fired power plant[J]. Environmental Science and Pollution Research,2022,29(24):36814-36823. doi: 10.1007/s11356-021-16745-7
    [21] HAN D M, WU Q R, WANG S X, et al. Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting[J]. Science of the Total Environment,2021,754:142285. doi: 10.1016/j.scitotenv.2020.142285
    [22] 环境保护部, 国家发展和改革委员会, 国家能源局. 关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知[EB/OL]. (2015-12-11)[2022-11-15]. https://www.mee.gov.cn/gkml/hbb/bwj/201512/t20151215_319170.htm.
    [23] 国家发展和改革委员会, 环境保护部, 国家能源局. 关于印发《煤电节能减排升级与改造行动计划(2014—2020年)》的通知[EB/OL]. (2014-09-12)[2022-11-15]. https://mee.gov.cn/gkml/hbb/gwy/201409/t20140925_289556.htm.
    [24] 史文峥, 杨萌萌, 张绪辉, 等.燃煤电厂超低排放技术路线与协同脱除[J]. 中国电机工程学报,2016,36(16):4308-4318.

    SHI W Z, YANG M M, ZHANG X H, et al. Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J]. Proceedings of the CSEE,2016,36(16):4308-4318.
    [25] 宋畅, 张翼, 郝剑, 等.燃煤电厂超低排放改造前后汞污染排放特征[J]. 环境科学研究,2017,30(5):672-677.

    SONG C, ZHANG Y, HAO J, et al. Mercury emission characteristics from coal-fired power plant before and after ultra-low emission retrofitting[J]. Research of Environmental Sciences,2017,30(5):672-677.
    [26] TANG Q, CHANG L R, HE F, et al. Impact of ultra-low emission retrofitting on partitioning and emission behavior of chromium in a Chinese coal-fired power plant[J]. Chemosphere,2022,302:134859. doi: 10.1016/j.chemosphere.2022.134859
    [27] 柴小康, 黄国和, 解玉磊, 等.某燃煤超低排放机组非常规污染物脱除[J]. 环境工程学报,2020,14(12):3480-3494. doi: 10.12030/j.cjee.202002032

    CHAI X K, HUANG G H, XIE Y L, et al. Unconventional pollutant removal from a coal-fired ultra-low emission unit[J]. Chinese Journal of Environmental Engineering,2020,14(12):3480-3494. doi: 10.12030/j.cjee.202002032
    [28] 石志鹏, 段伦博, 黄治军.1 000 MW超低排放机组Hg迁移特性[J]. 热力发电,2021,50(7):176-182.

    SHI Z P, DUAN L B, HUANG Z J. Migration characteristics of Hg from a 1 000 MW ultra-low emission coal-fired power plant[J]. Thermal Power Generation,2021,50(7):176-182.
    [29] 张辰, 邓双, 张凡, 等.燃用高灰高硫煤电厂的汞排放研究[J]. 环境工程技术学报,2013,3(1):53-58. doi: 10.3969/j.issn.1674-991X.2013.01.010

    ZHANG C, DENG S, ZHANG F, et al. Study on mercury emissions from a power plant burning high ash and high sulfur coal[J]. Journal of Environmental Engineering Technology,2013,3(1):53-58. doi: 10.3969/j.issn.1674-991X.2013.01.010
    [30] ZHAO S L, DUAN Y F, LI Y N, et al. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant[J]. Fuel,2018,214:597-606. doi: 10.1016/j.fuel.2017.09.093
    [31] US EPA. Method 29 determination of metals emissions from stationary sources[EB/OL]. (2017-08-02)[2022-11-20]. https://www.epa.gov/emc/method-29-metals-emissions-stationary-sources.
    [32] 中国煤炭工业协会. 煤的工业分析方法: GB/T 212—2008[S]. 北京: 中国标准出版社, 2008.
    [33] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法 仪器法: GB/T 30732—2014[S]. 北京: 中国标准出版社, 2014.
    [34] WANG S X, ZHANG L, LI G H, et al. Mercury emission and speciation of coal-fired power plants in China[J]. Atmospheric Chemistry and Physics,2010,10(3):1183-1192. doi: 10.5194/acp-10-1183-2010
    [35] QUICK W J, IRONS R M A. Trace element partitioning during the firing of washed and untreated power station coals[J]. Fuel,2002,81(5):665-672. doi: 10.1016/S0016-2361(01)00197-1
    [36] 华伟, 孙和泰, 祁建民, 等.燃煤电厂超低排放机组重金属铅、砷排放特性[J]. 热力发电,2019,48(10):65-70.

    HUA W, SUN H T, QI J M, et al. Emission characteristics of Pb and As from an ultra-low emission coal-fired power plant[J]. Thermal Power Generation,2019,48(10):65-70.
    [37] 黄永达, 胡红云, 龚泓宇, 等.燃煤电厂砷、硒、铅的排放与控制技术研究进展[J]. 燃料化学学报,2020,48(11):1281-1297.

    HUANG Y D, HU H Y, GONG H Y, et al. Research progress on emission and control technologies of arsenic, selenium and lead in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology,2020,48(11):1281-1297.
    [38] WANG C, LIU X W, LI D, et al. Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer[J]. Proceedings of the Combustion Institute,2015,35(3):2793-2800. doi: 10.1016/j.proci.2014.07.004
    [39] HU B, ZHANG L, YI Y, et al. PM2.5 and SO3 collaborative removal in electrostatic precipitator[J]. Powder Technology,2017,318:484-490. doi: 10.1016/j.powtec.2017.06.008
    [40] 易红宏, 郝吉明, 段雷, 等.电厂除尘设施对PM10排放特征影响研究[J]. 环境科学,2006,27(10):1921-1927.

    YI H H, HAO J M, DUAN L, et al. Influence of dust catchers on PM10 emission characteristics of power plants[J]. Environmental Science,2006,27(10):1921-1927.
    [41] LUO Y, GIAMMAR D E, HUHMANN B L, et al. Speciation of selenium, arsenic, and zinc in class C fly ash[J]. Energy & Fuels,2011,25(7):2980-2987.
    [42] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel,2009,88(3):539-546. doi: 10.1016/j.fuel.2008.09.028
    [43] HUANG Y D, GONG H Y, HU H Y, et al. Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal[J]. Chemosphere,2021,263:127920. doi: 10.1016/j.chemosphere.2020.127920
    [44] GULLETT B K, RAGHUNATHAN K. Reduction of coal-based metal emissions by furnace sorbent injection[J]. Energy Fuels,2002,8(5):1068-1076.
    [45] FLETCHER N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics,1958,29(3):572-576. doi: 10.1063/1.1744540
    [46] FAN Y, QIN F H, LUO X S, et al. Heterogeneous condensation on insoluble spherical particles: modeling and parametric study[J]. Chemical Engineering Science,2013,102:387-396. doi: 10.1016/j.ces.2013.08.040
    [47] NOURI H, ZOUZOU N, MOREAU E, et al. Effect of relative humidity on current–voltage characteristics of an electrostatic precipitator[J]. Journal of Electrostatics,2012,70(1):20-24. doi: 10.1016/j.elstat.2011.08.011
    [48] 左朋莱, 王晨龙, 佟莉, 等.小型燃煤机组烟气重金属排放特征研究[J]. 环境科学研究,2020,33(11):2599-2604.

    ZUO P L, WANG C L, TONG L, et al. Emission characteristics of heavy metal in flue gas of small coal-fired units[J]. Research of Environmental Sciences,2020,33(11):2599-2604.
    [49] 舒英钢. 燃煤电厂电除尘技术综述[C]//第十五届中国电除尘学术会议论文集. 蚌埠, 2013: 12-19.
    [50] 张序, 李建军.燃煤电厂烟气超低排放技术路线的研究[J]. 四川化工,2015,18(5):55-58.

    ZHANG X, LI J J. The study of ultra-low emission technology in coal-fired power plant[J]. Sichuan Chemical Industry,2015,18(5):55-58.
    [51] US EPA. National emission standards for hazardous air pollutants from coal- and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units[S/OL]. (2012-03-03)[2022-10-11]. https://www.gao.gov/products/gao-12-489r.
    [52] 邓双, 张凡, 刘宇, 等.燃煤电厂铅的迁移转化研究[J]. 中国环境科学,2013,33(7):1199-1206.

    DENG S, ZHANG F, LIU Y, et al. Lead emission and speciation of coal-fired power plants in China[J]. China Environmental Science,2013,33(7):1199-1206.
    [53] CHANG L, YANG J P, ZHAO Y C, et al. Behavior and fate of As, Se, and Cd in an ultra-low emission coal-fired power plant[J]. Journal of Cleaner Production,2019,209:722-730. doi: 10.1016/j.jclepro.2018.10.270
    [54] 邹仁杰. 湿法烟气脱硫系统中硒迁移行为与强化脱除方法研究[D]. 武汉: 华中科技大学, 2021.
    [55] 赵士林, 段钰锋, 丁艳军, 等.320 MW燃煤电厂痕量元素的分布、脱除及排放特性[J]. 化工学报,2017,68(7):2910-2917.

    ZHAO S L, DUAN Y F, DING Y J, et al. Distribution, co-removal and emission characteristic of trace elements in 320 MW coal-fired power plant[J]. CIESC Journal,2017,68(7):2910-2917.
    [56] WANG H S, ZOU C, HU H Y, et al. Migration and emission characteristics of trace elements in coal-fired power plant under deep peak load regulation[J]. Science of the Total Environment,2023,868:161626. doi: 10.1016/j.scitotenv.2023.161626
    [57] XU L W, WU Q R, CHANG H Z, et al. Chemical deactivation of selective catalytic reduction catalyst: investigating the influence and mechanism of SeO2 poisoning[J]. Fuel,2020,269:117435. doi: 10.1016/j.fuel.2020.117435
    [58] KONG M, LIU Q C, WANG X Q, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications,2015,72:121-126. doi: 10.1016/j.catcom.2015.09.029
    [59] LINAK W P, WENDT J O L. Toxic metal emissions from incineration: mechanisms and control[J]. Progress in Energy and Combustion Science,1993,19(2):145-185. doi: 10.1016/0360-1285(93)90014-6
    [60] WANG N N, SUN X Y, ZHAO Q, et al. Leachability and adverse effects of coal fly ash: a review[J]. Journal of Hazardous Materials,2020,396:122725. doi: 10.1016/j.jhazmat.2020.122725
    [61] JAMBHULKAR H P, SHAIKH S M S, KUMAR M S. Fly ash toxicity, emerging issues and possible implications for its exploitation in agriculture;Indian scenario: a review[J]. Chemosphere,2018,213:333-344. □ doi: 10.1016/j.chemosphere.2018.09.045
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  69
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-03
  • 录用日期:  2023-04-04
  • 修回日期:  2023-03-18

目录

    /

    返回文章
    返回