留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化模拟的长株潭3+5城市群碳储量时空演变与预测

糜毅 李涛 吴博 赵燕萍

糜毅,李涛,吴博,等.基于优化模拟的长株潭3+5城市群碳储量时空演变与预测[J].环境工程技术学报,2023,13(5):1740-1751 doi: 10.12153/j.issn.1674-991X.20221291
引用本文: 糜毅,李涛,吴博,等.基于优化模拟的长株潭3+5城市群碳储量时空演变与预测[J].环境工程技术学报,2023,13(5):1740-1751 doi: 10.12153/j.issn.1674-991X.20221291
MI Y,LI T,WU B,et al.Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J].Journal of Environmental Engineering Technology,2023,13(5):1740-1751 doi: 10.12153/j.issn.1674-991X.20221291
Citation: MI Y,LI T,WU B,et al.Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J].Journal of Environmental Engineering Technology,2023,13(5):1740-1751 doi: 10.12153/j.issn.1674-991X.20221291

基于优化模拟的长株潭3+5城市群碳储量时空演变与预测

doi: 10.12153/j.issn.1674-991X.20221291
基金项目: 湖南省教育厅重点科研项目(18A245)
详细信息
    作者简介:

    糜毅(1988—),男,讲师,硕士,主要从事国土空间规划与城乡生态研究,3069719615@qq.com

    通讯作者:

    吴博(1987—),男,讲师,硕士,主要从事国土空间规划与城乡生态研究,164427126@qq.com

  • 中图分类号: X171.1

Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation

  • 摘要:

    土地利用/覆被变化是导致地区生态系统碳储量变化的重要原因,探析土地利用与碳储量的时空演变规律,对区域国土空间规划与生态管理、实现“双碳”战略目标具有重要意义。通过构建GeoDetector-PLUS-InVEST模型,基于多源数据分析长株潭3+5城市群2000—2020年土地利用及碳储量时空演变特征,预测2030年不同情景下的土地利用和碳储量变化,并通过空间自相关模型分析碳储量空间分布规律。结果表明:1)经过优化模拟的模型Kappa系数、FoM系数、总体精度结果比未优化模拟的结果分别高出0.81%、1.00%、0.67%;2)2000—2020年,研究区土地利用变化表现为耕地、林地、草地和水域面积减少,建设用地和未利用地面积增加;3)2000年、2010年、2020年3期碳储量分别为31.262 4×108、31.218 1×108和31.089 1×108 t,期间碳储量共减少17.328 7×106 t;4)相比2020年,2030年自然发展情景下碳储量减少12.1483×106 t,城镇发展情景下碳储量减少11.746 7×106 t,生态保护情景下碳储量增加14.754 0×106 t,3种情景下的碳储量空间分布较为相似,具有较显著的空间集聚特征,且与土地利用情况高度相关。研究结果可为长株潭3+5城市群土地空间规划和“双碳”政策的制定提供决策参考。

     

  • 图  1  研究区行政区划

    Figure  1.  Administrative divisions of the study area

    图  2  研究区2000—2020年土地利用分布

    Figure  2.  Distribution of land use in the study area from 2000 to 2020

    图  3  研究区2000—2020年碳储量空间分布及变化

    Figure  3.  Spatial distribution and changes of carbon storage in the study area from 2000 to 2020

    图  4  空间分异驱动因子的识别

    Figure  4.  Identification of driver factors of spatial differentiation

    图  5  2030年研究区不同情景下碳储量空间分布及变化

    Figure  5.  Spatial distribution and changes of carbon storage under different scenarios in the study area in 2030

    图  6  2030年研究区不同情景下碳储量全局空间自相关分析Moran散点图

    注:○表示长株潭3+5城市群的各城市。

    Figure  6.  Moran scatter plot of global spatial autocorrelation analysis of carbon storage under different scenarios in the study area in 2030

    图  7  2030年研究区不同情景下碳储量LISA集聚图

    Figure  7.  LISA agglomeration diagram of carbon storage under different scenarios in the study area in 2030

    图  8  2030年研究区不同情景下碳储量热点分布

    Figure  8.  Hot spot distribution of carbon storage under different scenarios in the study area in 2030

    表  1  研究区不同土地利用类型的碳密度[28-31]

    Table  1.   Carbon density of different land use types in the study area t/hm2 

    土地利用类型地上碳
    密度
    地下碳
    密度
    土壤碳
    密度
    死亡有机质
    碳密度
    耕地27.994.6108.40
    林地50.5151.8213.20
    草地22.886.599.90
    水域22.47900
    建设用地12.556.7110.80
    未利用地5.124.300
    下载: 导出CSV

    表  2  土地利用类型邻域权重

    Table  2.   Neighborhood factor weights of of each land use type

    耕地林地草地水域建设用地未利用地
    0.320 20.304 30.017 50.066 00.287 30.004 7
    下载: 导出CSV

    表  3  不同发展情景下土地利用转移矩阵

    Table  3.   Transfer matrix of each land use type under different development scenarios

    土地利用类型自然发展情景城镇发展情景生态保护情景
    abcdefabcdefabcdef
    a111111100010111000
    b111111111010010000
    c111111101010011000
    d000100000100111100
    e111111000010111110
    f111111100011111111
      注:a、b、c、d、e、f分别代表耕地、林地、草地、水域、建设用地和未利用地;0表示不能转化,1表示允许转化。
    下载: 导出CSV

    表  4  研究区2000—2020年各土地利用类型面积及占比

    Table  4.   Area and proportion of different types of land in the study area from 2000 to 2020

    年份耕地林地草地水域建设用地未利用地
    面积/km2占比/%面积/km2占比/%面积/km2占比/%面积/km2占比/%面积/km2占比/%面积/km2占比/%
    200034 546.4335.752 335.4354.11 462.891.55 832.176.01 919.762.0722.430.7
    201033 727.4234.852 067.3253.81 368.541.45 783.196.02 893.813.0978.831.0
    202033 120.6634.251 675.7253.41 350.381.45 815.366.03 890.134.0966.861.0
    下载: 导出CSV

    表  5  研究区2000—2020年各地类面积及动态度的变化

    Table  5.   Area and dynamic degree change of different types of land in the study area from 2000 to 2020

    土地利用
    类型
    2000—2010年2010—2020年2000—2020年
    变化面
    积/km2
    动态度/%变化面
    积/km2
    动态度/%变化面
    积/km2
    动态度/%
    耕地−819.01−0.24−606.76−0.18−1425.77−0.21
    林地−268.11−0.05−391.60−0.08−659.71−0.06
    草地−94.35−0.64−18.16−0.13−112.51−0.38
    水域−48.98−0.0832.170.06−16.81−0.01
    建设用地974.055.07996.323.441970.375.13
    未利用地256.403.55−11.97−0.12244.431.69
    下载: 导出CSV

    表  6  土地利用变化模拟精度验证

    Table  6.   Simulation accuracy verification of land use change

    模型Kappa系数FoM系数总体精度
    GD-PLUS0.920 50.423 70.952 9
    PLUS0.913 10.419 50.946 6
    下载: 导出CSV

    表  7  2030年研究区不同情景下各土地利用类型面积的变化

    Table  7.   Area change of different types of land under different scenarios in the study area in 2030

    土地利用
    类型
    自然发展情景城镇发展情景生态保护情景
    变化面
    积/km2
    动态度/%变化面
    积/km2
    动态度/%变化面
    积/km2
    动态度/%
    耕地−530.56−0.16−499.55−0.15−530.56−0.16
    林地−377.43−0.07−377.43−0.07749.870.15
    草地−17.24−0.13−17.24−0.13−17.24−0.13
    水域31.010.0500−14.07−0.02
    建设用地905.672.33905.672.33−176.55−0.45
    未利用地−11.45−0.12−11.45−0.12−11.45−0.12
    下载: 导出CSV
  • [1] 习近平代表第十九届中央委员会向党的二十大作报告[EB/OL]. (2022-10-16)[2023-02-20]. https://www.12371.cn/2022/10/16/ARTI1665901576200482.shtm.
    [2] 方精云, 于贵瑞, 任小波, 等.中国陆地生态系统固碳效应: 中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展[J]. 中国科学院院刊,2015,30(6):848-857.
    [3] 陈耀亮, 罗格平, 叶辉, 等.1975—2005年中亚土地利用/覆被变化对森林生态系统碳储量的影响[J]. 自然资源学报,2015,30(3):397-408. doi: 10.11849/zrzyxb.2015.03.004

    CHEN Y L, LUO G P, YE H, et al. Sources and sinks of carbon caused by forest land use change from 1975 to 2005 in central Asia[J]. Journal of Natural Resources,2015,30(3):397-408. doi: 10.11849/zrzyxb.2015.03.004
    [4] 陈广生, 田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报,2007,31(2):189-204. doi: 10.3321/j.issn:1005-264X.2007.02.003

    CHEN G S, TIAN H Q. Land use/cover change effects on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology,2007,31(2):189-204. doi: 10.3321/j.issn:1005-264X.2007.02.003
    [5] 杨潋威, 赵娟, 朱家田, 等.基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感,2022,34(4):175-182.

    YANG L W, ZHAO J, ZHU J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources,2022,34(4):175-182.
    [6] 张育诚, 韩念龙, 胡珂, 等.海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版),2023,47(2):115-122.

    ZHANG Y C, HAN N L, HU K, et al. The impact of land-use changes on the spatio-temporal variation of carbon storage in the central mountainous area of Hainan Island[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023,47(2):115-122.
    [7] RIJAL S, RIMAL B, ACHARYA R P, et al. Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal[J]. Environmental Monitoring and Assessment,2021,193(10):651. doi: 10.1007/s10661-021-09441-z
    [8] RAFAEL H G, ARTURO R L, CLEMENTINA G. Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico[J]. Remote Sensing Applications:Society and Environment,2019,13:318-327. doi: 10.1016/j.rsase.2018.12.005
    [9] POTTER C S, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841. doi: 10.1029/93GB02725
    [10] 邱建军, 唐华俊.北方农牧交错带耕地土壤有机碳储量变化模拟研究: 以内蒙古自治区为例[J]. 中国生态农业学报,2003,11(4):86-88.
    [11] FRIEDLINGSTEIN P, JONES M W, O'SULLIVAN M, et al. Global carbon budget 2019[J]. Earth System Science Data,2019,11(4):1783-1838. doi: 10.5194/essd-11-1783-2019
    [12] PRINCE S D, GOWARD S N. Global primary production: a remote sensing approach[J]. Journal of Biogeography,1995,22(4/5):815. doi: 10.2307/2845983
    [13] 王天福, 龚直文, 邓元杰.基于土地利用变化的陕西省植被碳汇提质增效优先区识别[J]. 自然资源学报,2022,37(5):1214-1232. doi: 10.31497/zrzyxb.20220508

    WANG T F, GONG Z W, DENG Y J. Identification of priority areas for improving quality and efficiency of vegetation carbon sinks in Shaanxi Province based on land use change[J]. Journal of Natural Resources,2022,37(5):1214-1232. doi: 10.31497/zrzyxb.20220508
    [14] 丁岳, 王柳柱, 桂峰, 等.基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学,2023,44(6):3343-3352. doi: 10.13227/j.hjkx.202204080

    DING Y, WANG L Z, GUI F, et al. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science,2023,44(6):3343-3352. doi: 10.13227/j.hjkx.202204080
    [15] LAI L, HUANG X J, YANG H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances,2016,2(11):e1601063. doi: 10.1126/sciadv.1601063
    [16] 林彤, 杨木壮, 吴大放, 等.基于InVEST-PLUS模型的碳储量空间关联性及预测: 以广东省为例[J]. 中国环境科学,2022,42(10):4827-4839. doi: 10.3969/j.issn.1000-6923.2022.10.041

    LIN T, YANG M Z, WU D F, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model: a case study in Guangdong Province[J]. China Environmental Science,2022,42(10):4827-4839. doi: 10.3969/j.issn.1000-6923.2022.10.041
    [17] 夏子良. 大庆市土地利用及植被碳储量动态变化特征[D]. 哈尔滨: 东北农业大学, 2022.
    [18] 徐自为, 张智杰.基于土地利用变更调查的2010—2016年新疆尉犁县生态系统碳储量时空变化[J]. 环境科学研究,2018,31(11):1909-1917. doi: 10.13198/j.issn.1001-6929.2018.03.42

    XU Z W, ZHANG Z J. Spatiotemporal variation of carbon storage in Yuli County during 2010-2016[J]. Research of Environmental Sciences,2018,31(11):1909-1917. doi: 10.13198/j.issn.1001-6929.2018.03.42
    [19] 刘洋, 张军, 周冬梅, 等.基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报,2021,41(10):4052-4065.

    LIU Y, ZHANG J, ZHOU D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica,2021,41(10):4052-4065.
    [20] 裴宏伟, 张红娟, 张良, 等.清水河流域生态系统服务评估及预测[J]. 环境工程技术学报,2022,12(5):1466-1473. doi: 10.12153/j.issn.1674-991X.20210341

    PEI H W, ZHANG H J, ZHANG L, et al. Assessment and prediction of ecosystem services in Qingshui River Basin[J]. Journal of Environmental Engineering Technology,2022,12(5):1466-1473. doi: 10.12153/j.issn.1674-991X.20210341
    [21] HUANG D Q, HUANG J, LIU T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries[J]. Land Use Policy,2019,82:422-435. doi: 10.1016/j.landusepol.2018.12.028
    [22] 李欣, 王志远, 刘丹丹, 等.生态安全格局约束下长株潭都市圈建设用地演变模拟与管控[J]. 环境工程技术学报,2023,13(1):348-358. doi: 10.12153/j.issn.1674-991X.20210835

    LI X, WANG Z Y, LIU D D, et al. Simulation and control of the evolution of construction land in Changzhutan Metropolitan Area under the constraints of ecological security pattern[J]. Journal of Environmental Engineering Technology,2023,13(1):348-358. doi: 10.12153/j.issn.1674-991X.20210835
    [23] SHI M J, WU H Q, FAN X, et al. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River valley, China[J]. Sustainability,2021,13(3):1577. doi: 10.3390/su13031577
    [24] LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems,2021,85:101569. doi: 10.1016/j.compenvurbsys.2020.101569
    [25] 王旭熙, 彭立, 刘守江, 等.中国西南山区城市建设用地扩张特征及其驱动机制[J]. 生态学杂志,2021,40(9):2895-2903. doi: 10.13292/j.1000-4890.202109.017

    WANG X X, PENG L, LIU S J, et al. Characteristics and the driving mechanism of urban construction land expansion in mountainous areas of southwest China[J]. Chinese Journal of Ecology,2021,40(9):2895-2903. doi: 10.13292/j.1000-4890.202109.017
    [26] 田义超, 梁铭忠, 任志远.城乡过渡区土地利用变化模拟与生态风险时空异质性特征[J]. 环境科学研究,2013,26(5):540-548. doi: 10.13198/j.res.2013.05.79.tianych.006

    TIAN Y C, LIANG M Z, REN Z Y. Simulation of land use change and temporal-spatial heterogeneity of eco-risk in urban fringe[J]. Research of Environmental Sciences,2013,26(5):540-548. doi: 10.13198/j.res.2013.05.79.tianych.006
    [27] 王劲峰, 徐成东.地理探测器: 原理与展望[J]. 地理学报,2017,72(1):116-134. doi: 10.11821/dlxb201701010

    WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116-134. doi: 10.11821/dlxb201701010
    [28] 欧阳晓, 王坤, 魏晓.城乡建设用地关联对生态系统服务的影响: 以洞庭湖地区为例[J]. 生态学报,2022,42(21):8713-8722.

    OUYANG X, WANG K, WEI X. Impacts of urban-rural construction land linkages on ecosystem services: a case study of Dongting Lake area[J]. Acta Ecologica Sinica,2022,42(21):8713-8722.
    [29] OUYANG X, TANG L S, WEI X, et al. Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations[J]. Land Use Policy,2021,109:105587. doi: 10.1016/j.landusepol.2021.105587
    [30] 解宪丽, 孙波, 周慧珍, 等.中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报,2004,41(1):35-43. doi: 10.3321/j.issn:0564-3929.2004.01.006

    XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica,2004,41(1):35-43. doi: 10.3321/j.issn:0564-3929.2004.01.006
    [31] 徐丽, 何念鹏, 于贵瑞.2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据,2019,4(1):90-96.

    XU L, HE N P, YU G R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. China Scientific Data,2019,4(1):90-96.
    [32] 张考, 黄春华, 王志远, 等.基于优化地理模拟的长沙市城镇开发边界划定[J]. 科学技术与工程,2021,21(24):10461-10471. doi: 10.3969/j.issn.1671-1815.2021.24.049

    ZHANG K, HUANG C H, WANG Z Y, et al. Delimitation of urban development boundary in Changsha City based on optimal geographical simulation[J]. Science Technology and Engineering,2021,21(24):10461-10471. doi: 10.3969/j.issn.1671-1815.2021.24.049
    [33] 王莉红, 张军民.基于地理探测器的绿洲城镇空间扩张驱动力分析: 以新疆石河子市为例[J]. 地域研究与开发,2019,38(4):68-74. doi: 10.3969/j.issn.1003-2363.2019.04.011

    WANG L H, ZHANG J M. Driving force analysis of spatial expansion of oasis towns based on geographical detectors: take Shihezi City in Xinjiang as an example[J]. Areal Research and Development,2019,38(4):68-74. doi: 10.3969/j.issn.1003-2363.2019.04.011
    [34] YAN Y C, JU H R, ZHANG S R, et al. Spatiotemporal patterns and driving forces of urban expansion in coastal areas: a study on urban agglomeration in the Pearl River Delta, China[J]. Sustainability,2019,12(1):191. doi: 10.3390/su12010191
    [35] 雒舒琪, 胡晓萌, 孙媛, 等.耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报(中英文),2023,31(2):300-314. doi: 10.12357/cjea.20220520
    [36] 李志芳, 王锐, 沈新磊.基于质量指数和空间自相关分析的耕地保护分区研究[J]. 土壤通报,2021,52(4):785-792. doi: 10.19336/j.cnki.trtb.2020090201

    LI Z F, WANG R, SHEN X L. Cultivated land protection zoning based on quality index and spatial autocorrelation[J]. Chinese Journal of Soil Science,2021,52(4):785-792. doi: 10.19336/j.cnki.trtb.2020090201
    [37] 欧阳晓, 李勇辉, 徐帆, 等.城市用地扩张与生态环境保护的交互作用研究: 以长株潭城市群为例[J]. 经济地理,2021,41(7):193-201.
    [38] 杨伶, 王金龙, 周文强.基于多情景模拟的洞庭湖流域LUCC与生境质量耦合演变分析[J]. 中国环境科学,2023,43(2):863-873. doi: 10.3969/j.issn.1000-6923.2023.02.039

    YANG L, WANG J L, ZHOU W Q. Coupling evolution analysis of LUCC and habitat quality in Dongting Lake Basin based on multi-scenario simulation[J]. China Environmental Science,2023,43(2):863-873. doi: 10.3969/j.issn.1000-6923.2023.02.039
    [39] 魏玺, 邵亚, 蔡湘文, 等.漓江流域陆地生态系统碳储量时空特征与预测[J]. 环境工程技术学报,2023,13(3):1223-1233. doi: 10.12153/j.issn.1674-991X.20220378

    WEI X, SHAO Y, CAI X W, et al. Temporal and spatial characteristics and prediction of carbon storage in terrestrial ecosystem of Lijiang River Basin[J]. Journal of Environmental Engineering Technology,2023,13(3):1223-1233. doi: 10.12153/j.issn.1674-991X.20220378
    [40] 熊炜.洞庭湖流域保护的立法问题研究[J]. 湘潭大学学报(哲学社会科学版),2020,44(6):105-109. doi: 10.13715/j.cnki.jxupss.2020.06.016
    [41] LIANG X, GUAN Q F, CLARKE K C, et al. Mixed-cell cellular automata: a new approach for simulating the spatio-temporal dynamics of mixed land use structures[J]. Landscape and Urban Planning,2021,205:103960. doi: 10.1016/j.landurbplan.2020.103960
    [42] ZHOU J J, ZHAO Y R, HUANG P, et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China[J]. Ecological Indicators,2020,118:106803. ◇ doi: 10.1016/j.ecolind.2020.106803
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  102
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30

目录

    /

    返回文章
    返回