留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

餐厨垃圾厌氧消化过程养分综合利用研究

周海云 张桐 边博 袁思佳 刘波 杨珍珍 顾凰琳

周海云,张桐,边博,等.餐厨垃圾厌氧消化过程养分综合利用研究[J].环境工程技术学报,2024,14(1):224-230 doi: 10.12153/j.issn.1674-991X.20221283
引用本文: 周海云,张桐,边博,等.餐厨垃圾厌氧消化过程养分综合利用研究[J].环境工程技术学报,2024,14(1):224-230 doi: 10.12153/j.issn.1674-991X.20221283
ZHOU H Y,ZHANG T,BIAN B,et al.Study on the comprehensive utilization of nutrients in the anaerobic digestion process of kitchen waste[J].Journal of Environmental Engineering Technology,2024,14(1):224-230 doi: 10.12153/j.issn.1674-991X.20221283
Citation: ZHOU H Y,ZHANG T,BIAN B,et al.Study on the comprehensive utilization of nutrients in the anaerobic digestion process of kitchen waste[J].Journal of Environmental Engineering Technology,2024,14(1):224-230 doi: 10.12153/j.issn.1674-991X.20221283

餐厨垃圾厌氧消化过程养分综合利用研究

doi: 10.12153/j.issn.1674-991X.20221283
基金项目: 江苏省碳达峰碳中和科技创新专项(BE2022604);江苏省重点研发计划(社会发展)专项(BE2021627);江苏省环保集团科技项目计划(JSEP-TZ-2021-2008-RE)
详细信息
    作者简介:

    周海云(1981—),男,高级工程师,主要从事有机废物、工业废盐等固体废物处理处置应用技术与装备研发,zhouhaiyun@jsep.com

  • 中图分类号: X705

Study on the comprehensive utilization of nutrients in the anaerobic digestion process of kitchen waste

Funds: LI X H,CHEN Z W,LIU Y Y,et al.Urban food residue treatment project based on scenario analysis[J].Chinese Journal of Environmental Management,2013,5(2):17-20.
  • 摘要:

    餐厨垃圾产量大、危害大、回收价值高,合理利用其中磷的资源价值,可规避其污染风险。综合利用情景分析与物质流分析方法,基于情景分析和养分流动概念模型,对苏南地区餐厨垃圾厌氧消化副产物以3种情景进行处理〔沼液进行水处理,沼渣焚烧(情景1,S1);沼液还田,沼渣制有机肥(情景2,S2);沼液进行水处理,沼渣制有机肥(情景3,S3)〕,以100 t的餐厨垃圾处理规模为参考,分析总磷(TP)的物质流。结果表明:S1的餐厨垃圾中有0.99 kg TP还田,最终有0.96 kg TP进入水稻;S2的餐厨垃圾中有64.05 kg TP还田,最终有62.10 kg TP进入水稻;S3的餐厨垃圾中有8.67 kg TP还田,最终有8.49 kg TP进入水稻。结合经济性能对3种情景进行综合评价,发现S2为餐厨垃圾资源化的最优模式,TP的资源化利用率为91.53%,远高于S1和S3。

     

  • 图  1  不同餐厨垃圾资源化情景模型

    Figure  1.  Scenario model for resource utilization of different kitchen waste

    图  2  不同情景养分流动模型

    Figure  2.  Nutrient flow model of different scenarios

    图  3  餐厨垃圾处理过程中TP总量流动

    Figure  3.  Total TP flow during the treatment of kitchen waste

    图  4  不同情景餐厨废物资源化全过程TP流动

    Figure  4.  TP flow of the whole process of kitchen waste recycling in different scenarios

    表  1  试验材料、中间产物、产品和不同沼渣沼液处理情景中的质量和营养浓度

    Table  1.   Quality and nutrient concentration of experimental materials, intermediate products, products and different biogas slurry treatment scenarios

    项目质量/kgTN浓度/
    (g/kg)
    TP浓度/
    (g/kg)
    含水率/%
    试验材料餐厨垃圾1002.200.6880
    冲洗水15100
    预处理残渣有机残渣85.530.675
    无机残渣1.9≤70
    有机残渣毛油2.10.7
    虫粪1.684.010.5965
    其他1.623.442.460
    沼渣及沼液
    分离物
    消化液95.52.670.6198
    沼液92.32.70.698.5
    沼渣3.226.247.6880
    S1虫粪有机肥0.2716.23.6823
    水处理废水88.30.070.00899.5
    水处理污泥3.421.4416.0780
    S2虫粪有机肥0.2716.23.6823
    沼渣有机肥1.0720.317.1830
    沼液有机肥92.32.70.698.5
    S3虫粪有机肥0.2716.23.6823
    水处理污泥3.421.4416.0799.5
    沼渣有机肥1.0720.317.1830
    水处理废水88.30.070.00899.5
    下载: 导出CSV

    表  2  经济性能分析指标

    Table  2.   Economic performance analysis indicators

    处理类型 成本/(元/t) 利润/(元/t)
    沼液水处理 300 0
    沼渣焚烧 300 0
    沼液还田 60 0
    沼渣堆肥 150 460
    下载: 导出CSV

    表  3  经济性能分析结果[25-26]

    Table  3.   Economic performance analysis results

    处理情景 技术路径 处理量/t 产品量/t 成本/元 利润/元 净收益/元
    S1沼液水处理92.327 6900−28 650.0
    沼渣焚烧3.29600
    S2沼液还田92.35 5380−5 525.8
    沼渣堆肥3.21.07480492.2
    S3沼液水处理92.327 6900−27 677.8
    沼渣堆肥3.21.07480492.2
    下载: 导出CSV

    表  4  S2沼液还田处理成本

    Table  4.   Sensitivity analysis of S2 biogas slurry returning to the field 元 

    沼液还田处理量/t单位处理成本/(元/t)
    485154576063666972
    73.803 542.403 763.803 985.204 206.604 428.004 649.404 870.805 092.205 313.60
    78.463 766.084 001.464 236.844 472.224 707.604 942.985 178.365 413.745 649.12
    83.073 987.364 236.574 485.784 734.994 984.205 233.415 482.625 731.835 981.04
    87.704 209.604 472.704 735.804 998.905 262.005 525.105 788.206 051.306 314.40
    92.304 430.404 707.304 984.205 261.105 538.005 814.906 091.806 368.706 645.60
    96.924 652.164 942.925 233.685 524.445 815.206 105.966 396.726 687.486 978.24
    101.534 873.445 178.035 482.625 787.216 091.806 396.396 700.987 005.577 310.16
    106.155 095.205 413.655 732.106 050.556 369.006 687.457 005.907 324.357 642.80
    110.765 316.485 648.765 981.046 313.326 645.606 977.887 310.167 642.447 974.72
    下载: 导出CSV
  • [1] 树萌. 餐厨垃圾无害化处理迫在眉睫[J]. 环境经济,2018(增刊3):94-95.

    [2] 袁振宏, 罗文, 邢涛, 等. 中科院创新技术破解餐厨垃圾回收难题: 我国餐厨垃圾油气肥绿色联产技术实现资源综合利用[J]. 科技促进发展,2016(3):361-365.
    [3] 朱琳, 安立超, 戴昕, 等. 餐厨垃圾生物有机肥对贫瘠黄褐土改良的研究[J]. 环境科学研究,2020,33(8):1954-1963.

    ZHU L, AN L C, DAI X, et al. Improvement of barren yellow cinnamon soil by kitchen waste bio-organic fertilizer[J]. Research of Environmental Sciences,2020,33(8):1954-1963.
    [4] ABDALLAH M, HAMDAN S, SHABIB A. A multi-objective optimization model for strategic waste management master plans[J]. Journal of Cleaner Production,2021,284:124714. doi: 10.1016/j.jclepro.2020.124714
    [5] 吕凡, 章骅, 邵立明, 等. 基于物质流分析餐厨垃圾厌氧消化工艺的问题与对策[J]. 环境卫生工程,2017,25(1):1-9.

    LÜ F, ZHANG H, SHAO L M, et al. Problems of anaerobic digestion process to deal with food waste and its countermeasures through material flow analysis[J]. Environmental Sanitation Engineering,2017,25(1):1-9.
    [6] 夏天明, 黄凯锋, 李鸣晓, 等. 湿热预处理对餐厨废弃物厌氧产氢发酵类型的影响[J]. 环境工程技术学报,2014,4(2):150-157.

    XIA T M, HUANG K F, LI M X, et al. Impact of kitchen waste hydrothermal pre-treatment on anaerobic fermentation type and hydrogen production[J]. Journal of Environmental Engineering Technology,2014,4(2):150-157.
    [7] BÖRJESON L, HÖJER M, DREBORG K H, et al. Scenario types and techniques: towards a user's guide[J]. Futures,2006,38(7):723-739. doi: 10.1016/j.futures.2005.12.002
    [8] YAKUBU S O, FALCONER L, TELFER T C. Scenario analysis and land use change modelling reveal opportunities and challenges for sustainable expansion of aquaculture in Nigeria[J]. Aquaculture Reports,2022,23:101071. doi: 10.1016/j.aqrep.2022.101071
    [9] SUN Y, LIU S, WANG P, et al. China's roadmap to plastic waste management and associated economic costs[J]. Journal of Environmental Management,2022,309:114686. doi: 10.1016/j.jenvman.2022.114686
    [10] 刘永, 郭怀成, 王丽婧, 等. 环境规划中情景分析方法及应用研究[J]. 环境科学研究,2005,18(3):82-87.

    LIU Y, GUO H C, WANG L J, et al. Scenario analysis and its application in environmental planning[J]. Research of Environmental Sciences,2005,18(3):82-87.
    [11] ISLAM M T, HUDA N. Material flow analysis (MFA) as a strategic tool in E-waste management: applications, trends and future directions[J]. Journal of Environmental Management,2019,244:344-361.
    [12] TASMEEA T, ROY B B, CHOWDHURY R B, et al. Urban metabolism of phosphorus in the food production-consumption system of Bangladesh[J]. Journal of Environmental Management,2021,292:112715. doi: 10.1016/j.jenvman.2021.112715
    [13] HAN J C, SHANG F Z, LI P, et al. Coupling Bayesian-Monte Carlo simulations with substance flow analysis for efficient pollutant management: a case study of phosphorus flows in China[J]. Resources, Conservation and Recycling,2021,169:105550. doi: 10.1016/j.resconrec.2021.105550
    [14] 党春阁, 王璠, 赵志远, 等. 基于黄磷生产工艺的磷物质流分析及磷污染减排对策[J]. 环境工程技术学报,2020,10(6):1007-1011.

    DANG C G, WANG F, ZHAO Z Y, et al. Analysis of phosphorus material flow based on yellow phosphorus production process and countermeasures for phosphorus pollution reduction[J]. Journal of Environmental Engineering Technology,2020,10(6):1007-1011.
    [15] 陈敏鹏, 郭宝玲, 刘昱, 等. 磷元素物质流分析研究进展[J]. 生态学报,2015,35(20):6891-6900.

    CHEN M P, GUO B L, LIU Y, et al. Research on phosphorus flow analysis: progress and perspectives[J]. Acta Ecologica Sinica,2015,35(20):6891-6900.
    [16] LALANDER C, ERMOLAEV E, WIKLICKY V, et al. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content[J]. Science of the Total Environment,2020,729:138968. doi: 10.1016/j.scitotenv.2020.138968
    [17] KAWASAKI K, KAWASAKI T, HIRAYASU H, et al. Evaluation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae ( Hermetia illucens)[J]. Sustainability,2020,12(12):4920. doi: 10.3390/su12124920
    [18] ZENG Y, de GUARDIA A, DABERT P. Improving composting as a post-treatment of anaerobic digestate[J]. Bioresource Technology,2016,201:293-303. doi: 10.1016/j.biortech.2015.11.013
    [19] ESPINOSA-SALGADO R, SAUCEDO-CASTAÑEDA G, MONROY-HERMOSILLO O, et al. Composting a digestate from the organic fraction of urban solid wastes[J]. Revista Mexicana De Ingeniería Química,2020,19(1):1-8.
    [20] ZHANG Z P, HU M, BIAN B, et al. Full-scale thermophilic aerobic co-composting of blue-green algae sludge with livestock faeces and straw[J]. Science of the Total Environment,2021,753:142079. doi: 10.1016/j.scitotenv.2020.142079
    [21] CHIEW Y L, SPÅNGBERG J, BAKY A, et al. Environmental impact of recycling digested food waste as a fertilizer in agriculture: a case study[J]. Resources, Conservation and Recycling,2015,95:1-14. doi: 10.1016/j.resconrec.2014.11.015
    [22] YUAN Z W, JI J Y, SHENG H, et al. Animal based diets and environment: perspective from phosphorus flow quantifications of livestock and poultry raising in China[J]. Journal of Environmental Management,2019,244:199-207.
    [23] ZHU Z L, CHEN D L. Nitrogen fertilizer use in China: contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63(2):117-127.
    [24] LIU X W, YUAN Z W, LIU X, et al. Historic trends and future prospects of waste generation and recycling in China's phosphorus cycle[J]. Environmental Science & Technology,2020,54(8):5131-5139.
    [25] 黄元宸, 刘帅, 宁祉恺, 等. 苏州工业园区餐厨垃圾产生现状及收运方案研究[J]. 环境卫生工程,2021,29(5):62-68.
    [26] 李笑寒, 陈子惟, 刘咏妍, 等. 基于情景分析的城市餐厨垃圾处理方案研究[J]. 中国环境管理,2013,5(2):17-20. ⊗
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  48
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 录用日期:  2023-07-26
  • 修回日期:  2023-07-03

目录

    /

    返回文章
    返回