留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平原感潮河网地区河道水体表观污染评价及来源解析

李海云 潘杨 张龙飞 陈旭宇 秦天羽 吕凌霄 李尚珂

李海云,潘杨,张龙飞,等.平原感潮河网地区河道水体表观污染评价及来源解析[J].环境工程技术学报,2023,13(5):1839-1848 doi: 10.12153/j.issn.1674-991X.20221119
引用本文: 李海云,潘杨,张龙飞,等.平原感潮河网地区河道水体表观污染评价及来源解析[J].环境工程技术学报,2023,13(5):1839-1848 doi: 10.12153/j.issn.1674-991X.20221119
LI H Y,PAN Y,ZHANG L F,et al.Apparent pollution evaluation and source analysis of river water bodies in the tidal river network area of the plains[J].Journal of Environmental Engineering Technology,2023,13(5):1839-1848 doi: 10.12153/j.issn.1674-991X.20221119
Citation: LI H Y,PAN Y,ZHANG L F,et al.Apparent pollution evaluation and source analysis of river water bodies in the tidal river network area of the plains[J].Journal of Environmental Engineering Technology,2023,13(5):1839-1848 doi: 10.12153/j.issn.1674-991X.20221119

平原感潮河网地区河道水体表观污染评价及来源解析

doi: 10.12153/j.issn.1674-991X.20221119
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07205003)
详细信息
    作者简介:

    李海云(1998—),女,硕士研究生,主要从事环境污染控制理论与技术研究,2261568143@qq.com

    通讯作者:

    潘杨(1972—),男,教授,博士,主要从事地表水水体修复研究,panyang@mail.usts.edu.cn

  • 中图分类号: X522

Apparent pollution evaluation and source analysis of river water bodies in the tidal river network area of the plains

  • 摘要:

    以佛山市大沥镇河道为研究对象,采用表观污染指数法及表观污染类型的分类方法,从污染程度和污染类型2个角度对平原感潮河网地区河道水体表观污染状况及污染源进行评价,并利用正定矩阵因子分解模型定量解析污染源。结果表明:佛山市大沥镇河道水体表观质量整体不佳,表观污染类型以混合主导型为主,夏季和晚春的表观污染程度重于早春。不同片区水体表观状况从优至劣依次为镇水围片区>白沙片区>盐联围片区>黄岐盐联围片区>谢边涌及香基河片区>泌冲片区>后海片区。退潮时段河道水体表观质量较差,且涨退潮对镇南部河道水体表观质量影响较大。不同表观污染类型河道的污染源类型及贡献率不同,有机主导型(黑臭)的主要污染源为点源污染(52.61%);有机主导型(水华)的主要污染源为农业面源(35.98%);营养主导型的主要污染源为种植业污染(51.43%);无机主导型的主要污染源为地表径流(41.50%)。研究显示,大沥镇河道水体表观污染时空变化较为显著,不同表观污染类型的污染源具有差异性,需分类治理,从而改善水体表观状况。

     

  • 图  1  采样点位置示意

    Figure  1.  Distribution of sampling points

    图  2  SPI及水体表观质量等级分布随时间的变化

    Figure  2.  SPI value and apparent quality grade distribution over time

    图  3  表观污染类型占比随时间的变化

    Figure  3.  Proportion of apparent pollution types over time

    图  4  不同片区P45的对比

    Figure  4.  Comparison of P45 in different areas

    图  5  不同片区表观污染类型占比

    Figure  5.  Proportion of apparent pollution types in different areas

    图  6  不同时段大沥镇河道水体SPI变化

    Figure  6.  Changes in SPI of river channels in Dali Town during different periods

    图  7  基于PMF的不同表观污染类型水质的源成分谱

    Figure  7.  Source component profiles of water quality of different apparent pollution types based on PMF

    图  8  不同表观污染类型重点指标的污染源及其贡献率

    Figure  8.  Pollution sources and contribution rates of key indicators of different apparent pollution types

    表  1  水体颜色修正系数(β)取值

    Table  1.   Color correction factors (β) of watercourse

    颜色β
    绿色0.21
    黄色0.40
    灰色0.42
    黑色1.00
    下载: 导出CSV

    表  2  表观污染类型分类方法

    Table  2.   Classification methods for apparent pollution types

    表观污染类型判定条件
    有机主导型ORP<0 mV或DO/DOs>11),且Chl-a >50 μg/L
    无机主导型CODMn /浊度<0.08 (mg/L)/NTU
    营养主导型浊度<15 NTU, 且Chl-a <50 μg/L
    混合主导型其他
      1)DOs为饱和溶解氧浓度。
    下载: 导出CSV

    表  3  不同表观污染类型特征指标或特征值与各环境因子的相关系数

    Table  3.   Correlation coefficients between characteristic indicators or characteristic values of different apparent pollution types and environmental factors

    特征指标有机主导型(黑臭)有机主导型(水华)营养主导型无机主导型
    ORPDO/DOsChl-aChl-a浊度CODMn/浊度
    浊度−0.0590.1750.1230.17510.608
    DO0.571*0.795**0.500−0.237−0.1170.459
    ORP10.5260.2900.0710.196−0.297
    pH0.0240.0740.1980.597**0.1810.604
    T−0.1380.2210.0350.680**0.166−0.247
    TN浓度−0.445*0.5690.598−0.252−0.2420.716
    NH4 +-N浓度−0.592**0.744**0.560−0.326*0.0950.518
    TP浓度−0.683**0.745**0.428−0.164−0.0740.732
    Chl-a浓度0.1620.590110.175−0.182
    CODMn−0.608**0.5860.648*0.1920.2250.812*
    SS浓度0.122−0.483−0.425−0.1390.1090.791*
      注:**和*分别表示在0.05和0.01水平下显著相关。
    下载: 导出CSV

    表  4  大沥镇河道不同表观污染类型污染来源贡献率

    Table  4.   Contribution rate of pollution sources of different apparent pollution types in Dali Town's rivers

    污染类型污染因子污染源贡献率/%


    有机主导型(黑臭)
    H1点源污染52.61
    H2植物残体14.95
    H3气象因素4.91
    H4浮游植物4.82
    H5内源污染22.70


    有机主导型(水华)
    S1内源污染14.20
    S2生活污水24.36
    S3农业面源35.98
    S4洗涤类企业废水7.82
    S5气象因素17.64

    营养主导型
    Y1种植业污染51.43
    Y2地表径流39.28
    Y3气象因素9.29

    无机主导型
    W1内源污染4.28
    W3气象因素29.29
    W4浮游植物24.93
    W5地表径流41.50
    下载: 导出CSV
  • [1] 许益新, 李一平, 罗育池, 等.引水改善平原感潮河网水质效果评估[J]. 水资源保护,2019,35(6):124-130. doi: 10.3880/j.issn.1004-6933.2019.06.019

    XU Y X, LI Y P, LUO Y C, et al. Effect evaluation of water diversion to water quality improve in plain tidal river network[J]. Water Resources Protection,2019,35(6):124-130. doi: 10.3880/j.issn.1004-6933.2019.06.019
    [2] 崔树彬, 汪义杰, 张云, 等. 珠江三角洲感潮内河水体污染环境特征与修复技术研究[C]//第四届粤港澳可持续发展研讨会论文集. 广州: 广东省科学技术协会科技交流部, 2008: 60-66.
    [3] 丁小鹏. 感潮河西南涌的水质分析与污染源控制研究[D]. 广州: 广东工业大学, 2015.
    [4] 翁巧然, 吕旭波, 孙明东, 等.基于控制单元划分的大辽河流域污染物空间分布及来源解析[J]. 环境工程技术学报,2023,13(1):171-179.

    WENG Q R, LÜ X B, SUN M D, et al. Spatial distribution and source analysis of pollutants in Daliao River basin based on control unit division[J]. Journal of Environmental Engineering Technology,2023,13(1):171-179.
    [5] 张妍妍, 王峥, 邱斌, 等.长江流域湖北片区典型城市水生态环境问题解析及整治对策[J]. 环境工程技术学报,2023,13(1):27-35.

    ZHANG Y Y, WANG Z, QIU B, et al. Characteristics and countermeasures for urban water eco-environment problems in the typical cities in Hubei Area of Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2023,13(1):27-35.
    [6] 王子为, 钱昶, 张成波, 等.伊逊河流域总磷污染来源解析[J]. 环境科学研究,2020,33(10):2290-2297. doi: 10.13198/j.issn.1001-6929.2020.05.12

    WANG Z W, QIAN C, ZHANG C B, et al. Source apportionment of total phosphorus pollution in Yixun River Basin[J]. Research of Environmental Sciences,2020,33(10):2290-2297. doi: 10.13198/j.issn.1001-6929.2020.05.12
    [7] 黄国兰, 萧航, 陈春江, 等.化学质量平衡法在水体污染物源解析中的应用[J]. 环境科学,1999(6):14-17.

    HUANG G L, XIAO H, CHEN C J, et al. Source apportionment of water pollutants by Chemical-Mass-Balance Method[J]. Environmental Science,1999(6):14-17.
    [8] 陈凯, 刘启蒙, 刘瑜, 等.钱营孜煤矿深部地下水水化学特征及来源解析[J]. 煤田地质与勘探,2022,50(8):99-106. doi: 10.12363/issn.1001-1986.21.11.0631

    CEHN K, LIU Q M, LIU Y, et al. Hydrochemical characteristics and source analysis of deep groundwater in Qianyingzi Coal Mine[J]. Coal Geology & Exploration,2022,50(8):99-106. doi: 10.12363/issn.1001-1986.21.11.0631
    [9] SUBBA R N, DINAKAR A, SUN L, et al. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover: a case study[J]. Journal of Contaminant Hydrology,2022,248:103990-103990. doi: 10.1016/j.jconhyd.2022.103990
    [10] 后希康, 张凯, 段平洲, 等.基于APCS-MLR模型的沱河流域污染来源解析[J]. 环境科学研究,2021,34(10):2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30

    HOU X K, ZHANG K, DUAN P Z, et al. Pollution source apportionment of Tuohe River based on absolute principal component score: multiple linear regression[J]. Research of Environmental Sciences,2021,34(10):2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30
    [11] 张冬萍, 刘蓬, 刘琳, 等.黄石市磁湖水质时空分布及污染源解析[J]. 环境工程技术学报,2022,12(2):560-566. doi: 10.12153/j.issn.1674-991X.20210679

    ZHANG D P, LIU X, LIU L, et al. Temporal and spatial distribution of water quality and source apportionment in Cihu Lake, Huangshi City[J]. Journal of Environmental Engineering Technology,2022,12(2):560-566. doi: 10.12153/j.issn.1674-991X.20210679
    [12] 吴喜军, 董颖, 赵健, 等. 陕北矿区典型河流多环芳烃的赋存特征、来源及毒性风险分析[J]. 环境科学, 2023,44(4):2040-2051.

    WU X J, DONG Y, ZHAO J, et al. Occurrence characteristics, sources, and toxicity risk analysis of polycyclic aromatic hydrocarbons in typical rivers of northern Shaanxi mining area, China[J]. Environmental Science, 2023,44(4):2040-2051.
    [13] NIU C, ZHANG Q Q, XIAO L L, et al. Spatiotemporal variation in groundwater quality and source apportionment along the Ye River of North China using the PMF model[J]. International Journal of Environmental Research and Public Health,2022,19(3):1779-1779. doi: 10.3390/ijerph19031779
    [14] 马杰, 沈智杰, 张萍萍, 等. 基于APCS-MLR和PMF模型的煤矸山周边耕地土壤重金属污染特征及源解析[J]. 环境科学, 2023,44(4):2192-2203.

    MA J, SHEN Z J, ZHANG P P, et al. Pollution characteristics and source apportionment of heavy metals in farmland soils around the Gangue Heap of Coal Mine based on APCS-MLR and PMF receptor model[J]. Environmental Science, 2023, 44(4): 2192-2203.
    [15] 涂茜, 黄浩, 陆谢娟, 等.基于PMF模型的城市黑臭水体污染源解析: 以武汉市湖溪河为例[J]. 环境保护科学,2019,45(6):59-63.

    TU X, HUANG H, LU X J, et al. Analysis of pollution sources of urban black-odor water based on PMF model: a case study of the Huxi River in Wuhan[J]. Environmental Protection Science,2019,45(6):59-63.
    [16] REN C B, ZHANG Q Q, WANG H W, et al. Characteristics and source apportionment of polycyclic aromatic hydrocarbons of groundwater in Hutuo River alluvial-pluvial fan, China, based on PMF model[J]. Environmental Science and Pollution Research,2021,28(8):9647-9656. doi: 10.1007/s11356-020-11485-6
    [17] SARA C, STEFANO V, GIOVANNI L, et al. Characterization of the Danube River sediments using the PMF multivariate approach[J]. Chemosphere,2014,95(9):329-335.
    [18] 魏攀龙, 潘杨, 戴天杰, 等.采用水体表观污染指数法评价苏州城市水体表观质量[J]. 环境工程,2019,37(4):12-16.

    WEI P L, PAN Y, DAI T J, et al. Application of sensation pollution index method to evaluate the apparent quality of water body in Suzhou[J]. Environmental Engineering,2019,37(4):12-16.
    [19] 司壮壮. 表观污染城市水体中悬浮物有机特性及来源研究[D]. 苏州: 苏州科技大学, 2021.
    [20] 戴天杰, 魏攀龙, 潘杨, 等.苏州市景观水体表观污染类型识别及特征指标筛选[J]. 水资源保护,2021,37(2):141-147.

    DAI T J, WEI P L, PAN Y, et al. Identification of apparent pollution types and screening of characteristic indexes of landscape water body in Suzhou[J]. Water Resources Protection,2021,37(2):141-147.
    [21] PAATERO P, TANPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5(2):111-126. doi: 10.1002/env.3170050203
    [22] 吴青梅, 罗慧东, 孙国萍, 等.典型感潮内河涌水质污染特征调查研究[J]. 环境科学学报,2011,31(10):2210-2216.

    WU Q M, LUO H D, SUN G P, et al. Investigation on polluted water quality of the typical tidal urban river[J]. Acta Scientiae Circumstantiae,2011,31(10):2210-2216.
    [23] 魏攀龙. 城市水体表观污染分类及其关键影响因素研究[D]. 苏州: 苏州科技大学, 2019.
    [24] 俞茜. 普渡河污染源解析及浮游藻类变化特征[D]. 北京: 清华大学, 2015.
    [25] 宣雍祺, 张俊, 叶智峰, 等.广州市南沙新区流域污染分布特征及控制策略[J]. 安徽农业科学,2018,46(15):67-71. doi: 10.3969/j.issn.0517-6611.2018.15.021

    XUAN Y Q, ZHANG J, YE Z F, et al. Pollution distribution characteristics and control strategies in Nansha New District of Guangzhou City[J]. Journal Of Anhui Agricultural Sciences,2018,46(15):67-71. doi: 10.3969/j.issn.0517-6611.2018.15.021
    [26] SINGH H, SINGH D, SINGH S K, et al Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India[J]. International Journal of River Basin Management, 2017, 15(3): 347-360.
    [27] BAO T L, WANG P F, HU B, et al. Investigation on the effects of sediment resuspension on the binding of colloidal organic matter to copper using fluorescence techniques[J]. Chemosphere,2019,236(C):124312.
    [28] ZHU W Z, YANG G P, ZHANG H H. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters[J]. Science of the Total Environment,2017,607/608(6):214-224.
    [29] 王桢桢, 潘杨, 翟笑伟.封闭景观水体的表观污染机制研究[J]. 水污染防治,2015,33(4):9-13.

    WANG Z Z, PAN Y, ZHAI X W. Apparent pollution mechanism in the closed landscape water[J]. Water Pollution Control,2015,33(4):9-13.
    [30] 李尧, 刘建卫, 秦国帅, 等.浑太流域水质演变特征及污染源解析[J]. 中国农村水利水电,2021,466(8):14-17. doi: 10.3969/j.issn.1007-2284.2021.08.003

    LI Y, LIU J W, QIN G S, et al. Water quality evolution characteristics and pollution source analysis in Huntai River Basin[J]. China Rural Water and Hydropower,2021,466(8):14-17. doi: 10.3969/j.issn.1007-2284.2021.08.003
    [31] 徐燕, 唐周.基于水质分布特征和受体模型的河流水污染源解析研究[J]. 当代化工研究,2022,114(13):55-57.

    XU Y, TANG Z. Traceability analysis of river water pollution based on water quality distribution characteristics and receptor model[J]. Modern Chemical Research,2022,114(13):55-57.
    [32] 孙小淇. 武进区地表水水质分布特征及其氮污染来源解析研究[D]. 上海: 华东理工大学, 2020.
    [33] 章建宁, 蔡继军, 张浩.常州市地表水中氨氮输移分析及对策建议[J]. 环境监控与预警,2010,2(6):36-38. doi: 10.3969/j.issn.1674-6732.2010.06.011

    ZHANG J N, CAI J J, ZHANG H. The analysis and countermeasures of ammonia in nitrogen transportation in surface water of Changzhou[J]. Environmental Monitoring and Forewarning,2010,2(6):36-38. doi: 10.3969/j.issn.1674-6732.2010.06.011
    [34] 张占平.水体中氨氮污染来源及其控制: 富营养化的思考[J]. 内蒙古环境科学,2008,20(5):71-72.

    ZHANG Z P. The sources of ammonia and nitrogen pollution in water and their controls: thinking of eutrophication[J]. Environmental Science of Inner Mongolia,2008,20(5):71-72.
    [35] 程元辉, 毛宇鹏, 张洪.珠江三角洲地区人为氮磷净输入特征及污染管控建议[J]. 环境工程学报,2022,16(6):2049-2060.

    CHENG Y H, MAO Y P, ZHANG H. Characteristics of anthropogenic net input of nitrogen and phosphorus and suggestions on pollution control in Pearl River Delta[J]. Chinese Journal of Environmental Engineering,2022,16(6):2049-2060. ⊕
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  128
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 录用日期:  2023-05-21
  • 修回日期:  2023-04-03
  • 网络出版日期:  2023-07-19

目录

    /

    返回文章
    返回