留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外掺料对植被混凝土高羊茅根系生长及抗剪强度的作用

李双洋 陈芳清 熊丹伟

李双洋,陈芳清,熊丹伟.外掺料对植被混凝土高羊茅根系生长及抗剪强度的作用[J].环境工程技术学报,2023,13(3):1242-1248 doi: 10.12153/j.issn.1674-991X.20220657
引用本文: 李双洋,陈芳清,熊丹伟.外掺料对植被混凝土高羊茅根系生长及抗剪强度的作用[J].环境工程技术学报,2023,13(3):1242-1248 doi: 10.12153/j.issn.1674-991X.20220657
LI S Y,CHEN F Q,XIONG D W.Effect of external admixtures on the growth and shear strength of Festuca arundinacea roots in vegetated concrete[J].Journal of Environmental Engineering Technology,2023,13(3):1242-1248 doi: 10.12153/j.issn.1674-991X.20220657
Citation: LI S Y,CHEN F Q,XIONG D W.Effect of external admixtures on the growth and shear strength of Festuca arundinacea roots in vegetated concrete[J].Journal of Environmental Engineering Technology,2023,13(3):1242-1248 doi: 10.12153/j.issn.1674-991X.20220657

外掺料对植被混凝土高羊茅根系生长及抗剪强度的作用

doi: 10.12153/j.issn.1674-991X.20220657
基金项目: 国家重点研发计划项目(2017YFC0504904-02)
详细信息
    作者简介:

    李双洋(1997—),男,硕士研究生,主要研究方向为修复生态学,1033662684@qq.com

    通讯作者:

    陈芳清(1963—),男,教授,主要从事保护生态学和恢复生态学研究,fqchen@ctgu.cn

  • 中图分类号: Q948.1

Effect of external admixtures on the growth and shear strength of Festuca arundinacea roots in vegetated concrete

  • 摘要:

    为揭示外掺料对植被混凝土根系生长和固土护坡的作用,以高羊茅(Festuca arundinacea)为研究材料,分别添加不同含量的椰纤维与粉煤灰构建植被混凝土,测定高羊茅地下部根系的生长特征及根土复合体的抗剪强度。结果表明,椰纤维掺量和粉煤灰掺量对高羊茅根系生长有显著影响。根系总根长、根系表面积、根平均直径及地下生物量均随椰纤维与粉煤灰掺量的增加呈先增后减的变化趋势,在椰纤维掺量为0.3%、粉煤灰掺量为2%时达到最大值,分别比未添加椰纤维的处理增加了31.39%、30.20%、30.57%、12.80%,分别比未添加粉煤灰的处理增加了42.17%、22.85%、16.48%、29.22%。椰纤维掺量和粉煤灰掺量对植被混凝土基材的抗剪强度也有显著影响,基材的抗剪强度均随着外掺量增加呈先增加后减少的变化,在椰纤维和粉煤灰掺量分别为0.3%和2%时达到最大值。综合评估显示,高羊茅根系在外掺椰纤维0.3%和粉煤灰2%的改良植被混凝土生长最好,植被混凝土的抗剪强度最高。

     

  • 图  1  椰纤维掺量对植物根系生长的作用

    注:小写字母表示各处理之间的差异性,字母不同表示各处理在0.05水平下差异显著。全文同。

    Figure  1.  Effects of coconut fiber content on plant root growth

    图  2  粉煤灰掺量对植物根系生长的作用

    Figure  2.  Effects of fly ash content on plant root growth

    图  3  椰纤维掺量对植被混凝土抗剪强度的作用

    Figure  3.  Effect of coconut fiber content on shear strength of vegetated concrete

    图  4  粉煤灰掺量对植被混凝土抗剪强度的作用

    Figure  4.  Effect of fly ash content on shear strength of vegetated concrete

    表  1  植被混凝土基层各组分质量配比

    Table  1.   Mass ratio of each component of vegetated concrete base g 

    处理组种植土水泥有机物料绿化添加剂粉煤灰椰纤维
    F0Y010086400
    F0Y210086400.2
    F0Y310086400.3
    F0Y410086400.4
    F1Y010086410
    F1Y210086410.2
    F1Y310086410.3
    F1Y410086410.4
    F2Y010086420
    F2Y210086420.2
    F2Y310086420.3
    F2Y410086420.4
    F3Y010086430
    F3Y210086430.2
    F3Y310086430.3
    F3Y410086430.4
      注:表中为植被混凝土基层各组分质量配比,各组分以干土质量为参照。
    下载: 导出CSV

    表  2  外掺料对植物根系生长作用的多因素方差分析

    Table  2.   Multi-factor variance analysis of the effect of admixtures on plant root growth

    方差来源自由度均方FP
    椰纤维根系长度399471.9685.740.00
    根系表面积34186.7757.090.00
    根系平均直径30.76182.310.00
    地下生物量343885.151599.170.00
    粉煤灰根系长度3117100.17100.930.00
    根系表面积31205.5216.440.00
    根系平均直径30.1842.240.00
    地下生物量3403.8489.480.00
    椰纤维和粉煤灰根系长度96635.175.720.00
    根系表面积9190.702.600.00
    根系平均直径90.037.890.00
    地下生物量933.547.430.00
    下载: 导出CSV

    表  3  外掺料对植被混凝土抗剪强度作用的多因子方差分析

    Table  3.   Multi-factor variance analysis of the effect of admixture on shear strength of vegetated concrete

    方差来源自由度均方FP
    上层抗剪强度31559.18126.730.00
    椰纤维中层抗剪强度36716.73704.910.00
    下层抗剪强度33552.34355.130.00
    整体抗剪强度33542.63784.910.00
    粉煤灰上层抗剪强度3578.4647.020.00
    中层抗剪强度3542.7556.960.00
    下层抗剪强度3343.1334.300.00
    整体抗剪强度3403.8489.480.00
    椰纤维和粉煤灰上层抗剪强度944.283.600.00
    中层抗剪强度968.007.140.00
    下层抗剪强度949.694.970.00
    整体抗剪强度933.547.430.00
    下载: 导出CSV

    表  4  主成分分析载荷矩阵及贡献率

    Table  4.   Principal component analysis load matrix and contribution rate

    指标第一主成分第二主成分
    中层抗剪强度0.945−0.245
    整体抗剪强度0.942−0.329
    根系平均直径0.9310.103
    下层抗剪强度0.914−0.278
    根系表面积0.8760.316
    根系长度0.8570.443
    上层抗剪强度0.812−0.487
    地下生物量0.7860.558
    特征值6.2611.101
    主成分贡献率/%78.26113.763
    累计贡献率/%78.26192.024
    下载: 导出CSV

    表  5  处理组合排位前5的主成分得分

    Table  5.   Principal component scores of top 5 treatment combinations

    处理第一主成分第二主成分综合
    得分排名得分排名得分排名
    F2Y34.8310.3573.821
    F1Y32.912−0.73112.972
    F2Y22.4030.8182.103
    F3Y32.224−0.1452.074
    F1Y21.555−0.6491.545
    下载: 导出CSV
  • [1] 马振锋, 彭骏, 高文良, 等.近40年西南地区的气候变化事实[J]. 高原气象,2006(4):633-642.

    MA Z F, PENG J, GAO W L, et al. Climate variation of Southwest China in recent 40 years[J]. Plateau Meteorology,2006(4):633-642.
    [2] 徐裕华. 西南气候[M]. 北京: 气象出版社, 1991: 1-5.
    [3] 刘国华.西南生态安全格局形成机制及演变机理[J]. 生态学报,2016,36(22):7088-7091.

    LIU G H. Formation and evolution mechanism of ecological security pattern in Southwest China[J]. Acta Ecologica Sinica,2016,36(22):7088-7091.
    [4] 董瑞琨, 许兆义, 杨成永.青藏高原冻融侵蚀动力特征研究[J]. 水土保持学报,2000(4):12-16,42.

    DONG R K, XU Z Y, YANG C Y. Dynamic and characteristic of freezing-thawing erosion on Qinghai-Tibet Plateau[J]. Journal of Soil and Water Conservation,2000(4):12-16,42.
    [5] 叶帅华, 时轶磊.降雨入渗条件下多级黄土高边坡稳定性分析[J]. 工程地质学报,2018,26(6):1648-1656.

    YE S H, SHI Y L. Stability analysis of multi-stage high slope with loess under rainfall infiltration[J]. Journal of Engineering Geology,2018,26(6):1648-1656.
    [6] 屠义伟.复杂地质条件下山区公路边坡稳定性评价及加固方法设计[J]. 公路工程,2018,43(1):169-174.

    TU Y W. Stability evaluation and reinforcement method design of mountain highway slope under complex geological conditions[J]. Highway Engineering,2018,43(1):169-174.
    [7] LI Y, QI S, LIANG B, et al. Dangerous degree forecast of soil loss on highway slopes in mountainous areas of the Yunnan- Guizhou Plateau (China) using the revised universal soil loss equation[J]. Natural Hazards and Earth System Sciences,2019,19(4):757-774. doi: 10.5194/nhess-19-757-2019
    [8] MARTÍNEZ-RUIZ C, FERNANDEZ-SANTOS B, PUTWAIN P D, et al. Natural and man-induced revegetation on mining wastes: changes in the floristic composition during early succession[J]. Ecological Engineering,2007,30(3):286-294. doi: 10.1016/j.ecoleng.2007.01.014
    [9] TSIGE D, SENADHEERA S, TALEMA A. Stability analysis of plant-root-reinforced shallow slopes along mountainous road corridors based on numerical modeling[J]. Geosciences,2019,10(1):19. doi: 10.3390/geosciences10010019
    [10] 夏振尧, 许文年, 王乐华.植被混凝土生态护坡基材初期强度特性研究[J]. 岩土力学,2011,32(6):1719-1724.

    XIA Z Y, XU W N, WANG L H. Research on characteristics of early strength of ecological slope-protected base material of vegetation-growing concrete[J]. Rock and Soil Mechanics,2011,32(6):1719-1724.
    [11] 高文涛, 刘福胜, 韦梅, 等.新型抗冻植被混凝土配比及性能研究[J]. 新型建筑材料,2016,43(11):30-33.

    GAO W T, LIU F S, WEI M, et al. Study on new antifreeze vegetation concrete mix ratio and performance[J]. New Building Materials,2016,43(11):30-33.
    [12] 赵亮, 唐泽军, 刘芳.粉煤灰改良沙质土壤水分物理性质的室内试验[J]. 环境科学学报,2009,29(9):1951-1957.

    ZHAO L, TANG Z J, LIU F. Laboratory tests of fly ash as asandy soil amendment and its effects on soil water[J]. Acta Scientiae Circumstantiae,2009,29(9):1951-1957.
    [13] 张笑峰, 张艳美, 刘锦程, 等.纤维与粉煤灰改良粉土的正交试验分析[J]. 水利与建筑工程学报,2019,17(1):36-40.

    ZHANG X F, ZHANG Y M, LIU J C, et al. Orthogonal test analysis of improved silt with fiber and fly ash[J]. Journal of Water Resources and Architectural Engineering,2019,17(1):36-40.
    [14] 赵步, 李杨, 孙明星, 等. 水泥-电力行业的产业共生网络构建及区域案例研究[J]. 环境科学研究, 2019, 32(2): 190-196.

    ZHAO B, LI Y, SUN M X, et al. Industrial symbiosis network construction between cement and coal-fired power industries and the case study[J]. Research of Environmental Sciences
    [15] 王建东, 吕萌, 章玉容, 等.粉煤灰混凝土渗透相关性的试验研究[J]. 浙江工业大学学报,2020,48(2):217-221.

    WANG J D, LÜ M, ZHANG Y R, et al. Research on correlation of permeability of fly ash concrete[J]. Journal of Zhejiang University of Technology,2020,48(2):217-221.
    [16] ZHANG J Z, BIAN F, ZHANG Y R, et al. Effect of pore structures on gas permeability and chloride diffusivity of concre[J]. Construction and Building Materials,2018,163:402-413. doi: 10.1016/j.conbuildmat.2017.12.111
    [17] 董焕焕, 赵红, 邓俊双, 等.植被恢复方式对红壤丘陵区弃土场植被生长指标与土壤理化性质的影响[J]. 环境工程技术学报,2022,12(1):145-152.

    DONG H H, ZHAO H, DENG J S, et al. Effects of vegetation restoration methods on vegetation growth indexes and soil physical and chemical properties of spoil ground in red-soil hilly region[J]. Journal of Environmental Engineering Technology,2022,12(1):145-152.
    [18] HOU T S, XU G L, SHEN Y J, et al. Formation mechanism and stability analysis of the Houba expansive soil landslide[J]. Engineering Geology,2013,161:34-43. doi: 10.1016/j.enggeo.2013.04.010
    [19] CHEN F Q, ZHANG J X, ZHANG M, et al. Effect of Cynodon dactylon community on the conservation and reinforcement of riparian shallow soil in the Three Gorges Reservoir area[J]. Ecological Processes,2015,4(1):1-8. doi: 10.1186/s13717-014-0026-5
    [20] 胡小庆, 洪柳, 徐光黎, 等.纤维含量及长度对纤维加筋土强度的影响研究[J]. 安全与环境工程,2015,22(2):139-143. doi: 10.13578/j.cnki.issn.1671-1556.2015.02.027

    HU X Q, HONG L, XU G L, et al. Impacts of fiber content and fiber length on the strength and deformation of fiber reinforced soil[J]. Safety and Environmental Engineering,2015,22(2):139-143. doi: 10.13578/j.cnki.issn.1671-1556.2015.02.027
    [21] 杨晶磊.粉煤灰改良膨胀土力学特性试验[J]. 粉煤灰综合利用,2018(1):44-46. doi: 10.3969/j.issn.1005-8249.2018.01.012

    YANG J L. Experimental study on mechanical properties of expansive soil with fly ash[J]. Fly Ash Comprehensive Utilization,2018(1):44-46. doi: 10.3969/j.issn.1005-8249.2018.01.012
    [22] 刘黎明, 宋岩松, 钟斌, 房士栋, 等.植被混凝土生态修复技术研究进展[J]. 环境工程技术学报,2022,12(3):916-927.

    LIU L M, SONG Y S, ZHONG B, et al. Research progress on ecological restoration technology of vegetation concrete[J]. Journal of Environmental Engineering Technology,2022,12(3):916-927.
    [23] WANG L, GUO F X, YANG H M, et al. Comparison of fly ash, PVA fiber, MgO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis[J]. Fractals,2021,29(2):2140002. doi: 10.1142/S0218348X21400028
    [24] 师海然. 喷播绿化木纤维基质材料配方的开发研究[D]. 北京: 北京林业大学, 2019.
    [25] TRAN N P, GUNASEKARA C, LAW D W, et al. Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste[J]. Journal of Sustainable Cement-Based Materials,2022,11(1):41-61.
    [26] 崔征, 陈国新, 祝烨然, 等.外加剂对护坡型植生混凝土影响的研究进展[J]. 混凝土,2019(2):124-127.

    CUI Z, CHEN G X, ZHU Y R, et al. Research progress on the influence of admixture to the planting concrete used for slope protection[J]. Concrete,2019(2):124-127.
    [27] 张剑波, 吴勇生, 孙可伟, 等.再生骨料混凝土孔隙结构的试验研究[J]. 硅酸盐通报,2011,30(1):239-244. doi: 10.16552/j.cnki.issn1001-1625.2011.01.018

    ZHANG J B, WU Y S, SUN K W, et al. Experiment and study on pore structure of recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2011,30(1):239-244. doi: 10.16552/j.cnki.issn1001-1625.2011.01.018
    [28] ZAREEI S A, AMERI F, BAHRAMI N, et al. Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: mechanical, durability, and microstructural properties[J]. Journal of Building Engineering,2019,26:100914. doi: 10.1016/j.jobe.2019.100914
    [29] 胡建军. 掺粉煤灰和矿渣粉混凝土的碳化行为及其影响因素的研究[D]. 北京: 清华大学, 2010.
    [30] 张小平, 施斌.加筋纤维膨胀土的试验研究[J]. 长江科学院院报,2008(4):60-62. doi: 10.3969/j.issn.1001-5485.2008.04.016

    ZHANG X P, SHI B. Experimental study on reinforced fiber expansive soil[J]. Journal of Yangtze River Scientific Research Institute,2008(4):60-62. doi: 10.3969/j.issn.1001-5485.2008.04.016
    [31] WELKER A L, JOSTEN N. Interface friction of a geomembrane with a fiber reinforced soil[M]//Slopes and retaining structures under seismic and static conditions. 2005: 1-8.
    [32] MILLER C J, RIFAI S. Fiber reinforcement for waste containment soil liners[J]. Journal of Environmental Engineering,2004,130(8):891-895. doi: 10.1061/(ASCE)0733-9372(2004)130:8(891)
    [33] 王东星, 高向雲, 杜怡莹, 等.活性MgO-粉煤灰固化黄土剪切特性试验研究[J]. 防灾减灾工程学报,2018,38(5):822-829. doi: 10.13409/j.cnki.jdpme.2018.05.008

    WANG D X, GAO X Y, D Y Y, et al. Experimental investigation on shear properties of reactive MgO-fly ash stabilized loess[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(5):822-829. doi: 10.13409/j.cnki.jdpme.2018.05.008
    [34] 钟文乐, 李政启, 朱慈勉, 等.无砂多孔生态混凝土力学和植生性能试验研究[J]. 混凝土,2012(6):131-135. doi: 10.3969/j.issn.1002-3550.2012.06.040

    ZHONG W L, LI Z Q, ZHU C M, et al. Experimental study on mechanical and planting properties of porous ecological concrete[J]. Concrete,2012(6):131-135. doi: 10.3969/j.issn.1002-3550.2012.06.040
    [35] YE C, GUO Z L, LI Z X, et al. The effect of Bahiagrass roots on soil erosion resistance of aquults in subtropical China[J]. Geomorphology,2017,285:82-93. ⊕ doi: 10.1016/j.geomorph.2017.02.003
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  139
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-25
  • 录用日期:  2022-10-13
  • 修回日期:  2022-08-02

目录

    /

    返回文章
    返回