留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤机组电除尘器入口烟道流场优化数值模拟研究

马修元 孙尊强

马修元,孙尊强.燃煤机组电除尘器入口烟道流场优化数值模拟研究[J].环境工程技术学报,2023,13(3):965-972 doi: 10.12153/j.issn.1674-991X.20220019
引用本文: 马修元,孙尊强.燃煤机组电除尘器入口烟道流场优化数值模拟研究[J].环境工程技术学报,2023,13(3):965-972 doi: 10.12153/j.issn.1674-991X.20220019
MA X Y,SUN Z Q.Numerical simulation study on flow field optimization of electrostatic precipitator inlet flue duct in coal-fired units[J].Journal of Environmental Engineering Technology,2023,13(3):965-972 doi: 10.12153/j.issn.1674-991X.20220019
Citation: MA X Y,SUN Z Q.Numerical simulation study on flow field optimization of electrostatic precipitator inlet flue duct in coal-fired units[J].Journal of Environmental Engineering Technology,2023,13(3):965-972 doi: 10.12153/j.issn.1674-991X.20220019

燃煤机组电除尘器入口烟道流场优化数值模拟研究

doi: 10.12153/j.issn.1674-991X.20220019
基金项目: 国家重点研发计划项目(2017YFC0210200);国电环境保护研究院有限公司科技项目(HBWK2022Y01)
详细信息
    作者简介:

    马修元(1984—),男,正高级工程师,博士,主要从事燃煤电厂污染物控制技术研究,mxy4815@163.com

  • 中图分类号: X701.7

Numerical simulation study on flow field optimization of electrostatic precipitator inlet flue duct in coal-fired units

Funds: The project was supported by the (12345678)and (9876543)
  • 摘要:

    燃煤机组环保设施连接烟道阻力增加是风机能耗增大的主要因素之一,对烟道进行流场优化,降低烟道阻力和风机能耗是燃煤电厂节能降耗的有效途径之一。采用CFD数值模拟对某电厂660 MW燃煤机组电除尘器入口烟道进行流场优化,重点分析了5种不同优化方案下烟道阻力、风机能耗、灰质量流量分配比例、烟气灰浓度、导流板磨损速率等参数的变化规律。结果表明:通过设置合理结构形式及数量的导流板实现烟道降阻幅度28.7%,单台机组最大可节约风机能耗190 kW·h,节能降耗效果显著。新增导流板对烟气中灰质量流量分配比例具有调节作用,优化后A、B两侧烟道内灰质量流量比例偏差由14.8%降低至6.6%,提高了电除尘器的综合除尘率。烟道流场优化在改善灰浓度场分布的同时降低了导流板的磨损,优化后导流板的平均磨损速率由1.33×10−7 kg/(m2·s)降低至0.56×10−7 kg/(m2·s),降幅高达57.6%,导流板使用寿命是优化前的2.4倍,提高了机组运行的安全性和可靠性。

     

  • 图  1  烟道物理模型

    Figure  1.  Physical model of flue duct

    图  2  烟道优化位置示意

    注:图中数字为8个结构优化位置点。

    Figure  2.  Schematic diagram of optimized flue duct position

    图  3  方案一烟气速度分布

    Figure  3.  Flue gas velocity distribution in Scheme Ⅰ

    图  4  方案六烟气速度分布

    Figure  4.  Flue gas velocity distribution in Scheme Ⅵ

    图  5  烟道竖直截面烟气速度分布

    Figure  5.  Velocity distribution of vertical section in flue duct

    图  6  不同优化方案烟道阻力特性

    Figure  6.  Resistance characteristics of different optimization schemes for flue duct

    图  7  烟道竖直截面流线分布

    Figure  7.  Streamline distribution of vertical section in flue duct

    图  8  导流板数量对烟道阻力的影响

    Figure  8.  Influence of guiding plates number on flue resistance

    图  9  圆弧半径对烟道阻力的影响

    Figure  9.  Influence of arc radius on flue resistance

    图  10  不同优化方案节能分析对比

    Figure  10.  Energy saving analysis and comparison of different optimization schemes for flue duct

    图  11  灰流量分配特性

    Figure  11.  Characteristics of ash flow distribution

    图  12  灰浓度分布特性

    Figure  12.  Characteristics of ash concentration distribution

    图  13  导流板磨损速率变化规律

    Figure  13.  Changing law of guiding plates wearing rate

    图  14  导流板磨损情况分布

    Figure  14.  Distribution of guiding plates wearing

    表  1  烟道优化方案

    Table  1.   Flue duct optimization scheme

    序号具体方案
    方案一基准方案(未优化前的原始烟道)
    方案二位置③、⑦、⑧安装弧形导流板
    方案三位置③、⑦、⑧安装弧形导流板,位置①倒圆角
    方案四位置③、⑦、⑧安装弧形导流板,位置①倒圆角,
    位置④更换格栅
    方案五位置③、⑦、⑧安装弧形导流板,位置①倒圆角,位置④更换格栅,位置②安装弧形导流板
    方案六位置③、⑦、⑧安装弧形导流板,位置①倒圆角,位置④更换格栅,位置②安装弧形导流板,
    位置⑤、⑥安装弧形导流板
    下载: 导出CSV
  • [1] 陶莉, 肖育军. SCR区域喷氨的NH3分布与均匀性调整[J]. 环境工程技术学报, 2021, 11(4): 663-669.

    TAO L, XIAO Y J. NH3 distribution and uniformity adjustment of ammonia spray in SCR area[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 663-669.
    [2] 钟洪玲, 陈鸥, 王洪亮, 等.超低排放下燃煤电厂氨排放特征[J]. 环境科学研究,2021,34(1):124-131. doi: 10.13198/j.issn.1001-6929.2020.11.24

    ZHONG H L, CHEN O, WANG H L, et al. Characteristics of ammonia emission in flue gas from ultra-low emission coal-fired power plants[J]. Research of Environmental Sciences,2021,34(1):124-131. doi: 10.13198/j.issn.1001-6929.2020.11.24
    [3] 孙志鹏. 300 MW燃煤机组电除尘器前烟道流场CFD仿真与优化[J/OL]. 洁净煤技术. [2021-12-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JJMS20210112000&uniplatform=NZKPT&v=zFgFmBHRGGjAJJ7KXIBcj7DW31y2bbW8iG_hDK-BSIzoY8PF07QYFzcgKMNfBlRP.

    SUN Z P. CFD simulation and optimization of flow field in front flue of electric precipitator in a 300 MW coal-fired unit[J/OL]. Clean Coal Technology. [2021-12-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JJMS20210112000&uniplatform=NZKPT&v=zFgFmBHRGGjAJJ7KXIBcj7DW31y2bbW8iG_hDK-BSIzoY8PF07QYFzcgKMNfBlRP.
    [4] 赵海晓.600 MW超临界机组尾部烟道流场优化[J]. 浙江电力,2021,40(2):99-104.

    ZHAO H X. Optimization of flow field in tail flue of 600 MW supercritical unit[J]. Zhejiang Electric Power,2021,40(2):99-104.
    [5] 李凯伦, 孙大伟, 朱红伟, 等.600 MW火电机组烟道优化[J]. 热力发电,2017,46(4):120-124. doi: 10.3969/j.issn.1002-3364.2017.04.120

    LI K L, SUN D W, ZHU H W, et al. Optimization of flue duct for a 600 MW thermal power unit[J]. Thermal Power Generation,2017,46(4):120-124. doi: 10.3969/j.issn.1002-3364.2017.04.120
    [6] 柏源, 陈俊, 薛建明.600 MW等级燃煤机组烟道流场数值模拟与优化[J]. 电力科技与环保,2019,35(1):19-21. doi: 10.3969/j.issn.1674-8069.2019.01.007

    BAI Y, CHEN J, XUE J M. Numerical simulation and optimization for flue flow field of 600 MW coal-fired unit[J]. Electric Power Technology and Environmental Protection,2019,35(1):19-21. doi: 10.3969/j.issn.1674-8069.2019.01.007
    [7] 马海彦, 周雷, 王庭文, 等.1 060 MW燃煤机组烟道流场性能诊断与优化[J]. 发电技术,2018,39(3):253-258. doi: 10.12096/j.2096-4528.pgt.2018.039

    MA H Y, ZHOU L, WANG T W, et al. Performance diagnosis and optimization of flue flow field of 1 060 MW coal-fired unit[J]. Power Generation Technology,2018,39(3):253-258. doi: 10.12096/j.2096-4528.pgt.2018.039
    [8] 李巩, 叶兴联, 张浩, 等.SCR脱硝后低温省煤器磨损分析及结构优化[J]. 应用力学学报,2021,38(5):2049-2056. doi: 10.11776/cjam.38.05.A009

    LI G, YE X L, ZHANG H, et al. Wear analysis and structural optimization of low temperature economizer after SCR denitrification[J]. Chinese Journal of Applied Mechanics,2021,38(5):2049-2056. doi: 10.11776/cjam.38.05.A009
    [9] 牛国平, 周梦伟, 杨晓刚, 等.飞灰分布对烟冷器的磨损研究及工程实践[J]. 热力发电,2021,50(5):139-146. doi: 10.19666/j.rlfd.202006185

    NIU G P, ZHOU M W, YANG X G, et al. Research and engineering practice for the effect of fly ash distribution on wear of flue gas cooler[J]. Thermal Power Generation,2021,50(5):139-146. doi: 10.19666/j.rlfd.202006185
    [10] 张智雄. 卧式滤筒除尘器结构改进的数值模拟[D]. 长沙: 湖南大学, 2021.
    [11] 邓晓川, 胡龙彬, 李斌, 等.1 000 MW机组低温省煤器及烟道流场模拟优化研究[J]. 洁净煤技术,2019,25(6):158-164.

    DENG X C, HU L B, LI B, et al. Simulation and optimization study of low temperature economizer and flue flow field of 1 000 MW unit[J]. Clean Coal Technology,2019,25(6):158-164.
    [12] 莫逊, 朱冬生, 叶周, 等.电厂燃煤锅炉局部烟道导流装置设计优化[J]. 洁净煤技术,2021,27(5):180-188. doi: 10.13226/j.issn.1006-6772.20042001

    MO X, ZHU D S, YE Z, et al. Design and optimization of local flue guide plate of coal-fired boiler in power plant[J]. Clean Coal Technology,2021,27(5):180-188. doi: 10.13226/j.issn.1006-6772.20042001
    [13] 马鹏飞, 张选, 贾瑞龙, 等.电厂烟道烟气流动计算仿真及流量均衡研究[J]. 工业安全与环保,2021,47(3):83-86. doi: 10.3969/j.issn.1001-425X.2021.03.019

    MA P F, ZHANG X, JIA R L, et al. The research of numerical simulation and flowrate balance of flue gas flow in flue ducts of power plant[J]. Industrial Safety and Environmental Protection,2021,47(3):83-86. doi: 10.3969/j.issn.1001-425X.2021.03.019
    [14] 张立贤, 刘庆鑫.烟风道布置低温省煤器流场均匀性分析[J]. 东北电力大学学报,2020,40(3):88-92. doi: 10.19718/j.issn.1005-2992.2020-03-0088-05
    [15] 刘荣堂, 王宇, 刘明, 等.燃煤电站除尘器前烟道磨损特性与优化研究[J]. 工程热物理学报,2019,40(4):808-812.

    LIU R T, WANG Y, LIU M, et al. Investigation and optimization on erosion characteristics of the flue gas pipe before the dust collector in power plants[J]. Journal of Engineering Thermophysics,2019,40(4):808-812.
    [16] 肖育军, 李彩亭, 李珊红, 等.旋风-喷射鼓泡塔的结构特征与性能分析[J]. 环境工程技术学报,2019,9(2):126-132. doi: 10.12153/j.issn.1674-991X.2018.12.200

    XIAO Y J, LI C T, LI S H, et al. Structure characteristics and performance analysis of a novel cyclone-jet bubbling tower[J]. Journal of Environmental Engineering Technology,2019,9(2):126-132. doi: 10.12153/j.issn.1674-991X.2018.12.200
    [17] 周梦伟, 牛国平, 贾光瑞, 等.烟气飞灰对锅炉尾部烟道磨损数值模拟[J]. 热力发电,2019,48(8):62-67. doi: 10.19666/j.rlfd.201903051

    ZHOU M W, NIU G P, JIA G R, et al. Numerical simulation of fly ash erosion on bolier tail flue channel[J]. Thermal Power Generation,2019,48(8):62-67. doi: 10.19666/j.rlfd.201903051
    [18] 王珍, 曹文广, 彭维明.电除尘器上下游烟道流场分析及优化设计[J]. 环境工程学报,2016,10(12):7183-7187. doi: 10.12030/j.cjee.201510056

    WANG Z, CAO W G, PENG W M. Numerical simulation and optimizing design of gas-flow distribution of electrostatic precipitator[J]. Chinese Journal of Environmental Engineering,2016,10(12):7183-7187. doi: 10.12030/j.cjee.201510056
    [19] 蒋华, 蒲万里, 陈欣.燃煤电站锅炉尾部烟道阻力特性数值模拟和优化研究[J]. 锅炉技术,2021,52(4):16-19. doi: 10.3969/j.issn.1672-4763.2021.04.004

    JIANG H, PU W L, CHEN X. Numerical simulation and optimization on resistance characteristics of boiler flue gas ducts in coal fired power plant[J]. Boiler Technology,2021,52(4):16-19. doi: 10.3969/j.issn.1672-4763.2021.04.004
    [20] 邓庆波, 冉景煜, 杨仲卿, 等.湿法脱硫塔入口烟气调温耦合余热回收工艺系统节能分析比较[J]. 中国电机工程学报,2020,40(23):7667-7675. doi: 10.13334/J.0258-8013.PCSEE.200781

    DENG Q B, RAN J Y, YANG Z Q, et al. Energy saving analysis and comparison of flue gas temperature regulation coupling waste heat recovery process system at the entrance of wet desulfurization tower[J]. Proceedings of the CSEE,2020,40(23):7667-7675. □ doi: 10.13334/J.0258-8013.PCSEE.200781
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  185
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10

目录

    /

    返回文章
    返回