留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ecopath模型的长江口生态系统结构与功能分析

王殿常 吴兴华 丁玲 张蒙生 谢涵 张琴 李松

王殿常,吴兴华,丁玲,等.基于Ecopath模型的长江口生态系统结构与功能分析[J].环境工程技术学报,2022,12(2):417-425 doi: 10.12153/j.issn.1674-991X.20210714
引用本文: 王殿常,吴兴华,丁玲,等.基于Ecopath模型的长江口生态系统结构与功能分析[J].环境工程技术学报,2022,12(2):417-425 doi: 10.12153/j.issn.1674-991X.20210714
WANG D C,WU X H,DING L,et al.A preliminary analysis of the ecosystem structure and function of the Yangtze Estuary based on Ecopath model[J].Journal of Environmental Engineering Technology,2022,12(2):417-425 doi: 10.12153/j.issn.1674-991X.20210714
Citation: WANG D C,WU X H,DING L,et al.A preliminary analysis of the ecosystem structure and function of the Yangtze Estuary based on Ecopath model[J].Journal of Environmental Engineering Technology,2022,12(2):417-425 doi: 10.12153/j.issn.1674-991X.20210714

基于Ecopath模型的长江口生态系统结构与功能分析

doi: 10.12153/j.issn.1674-991X.20210714
基金项目: 中国长江三峡集团有限公司科研项目(201903173)
详细信息
    作者简介:

    王殿常(1973—),男,教授级高工,博士,主要从事环境科学与资源利用研究,wang_dianchang@ctg.com.cn

    通讯作者:

    李松(1991—),男,工程师,博士,主要从事长江口生态系统演变研究,lisong@sidri.com

  • 中图分类号: X17

A preliminary analysis of the ecosystem structure and function of the Yangtze Estuary based on Ecopath model

  • 摘要: 依据2020年春季(5月)和秋季(11月)2次长江口渔业资源和生态环境调查数据,构建长江口生态系统Ecopath模型,分析了长江全面禁渔前夕,长江口水域生态系统的结构和能量流动特征。模型共包括龙头鱼、凤鲚、刀鲚、舌鳎、浮游动物食性鱼类、底栖生物食性鱼类、游泳生物食性鱼类、杂食性鱼类等17个功能组,基本覆盖了长江口生态系统能量流动过程。结果表明,长江口生态系统营养级集中在1.000~4.438,龙头鱼营养级最高,其他鱼类营养级集中在2.907~3.768,分布较广;底栖生物、软体动物和虾蟹类的营养级集中在2.365~2.826。长江口生态系统各营养级的能量流动分布主要集中在营养级Ⅰ~Ⅱ中,来自营养级Ⅰ的能量流动在系统总能量流动中占比最高。长江口生态系统的能量流动以牧食食物链传递为主。与过去相比,2020年长江口生态系统总初级生产量/总呼吸量(TPP/TR)较高,连接指数(CI)与系统杂食指数(SOI)有所上升,但仍小于1,表明长江口生态系统仍不成熟,总体处于发育阶段。

     

  • 图  1  长江口调查站位

    Figure  1.  Location of survey stations in the Yangtze Estuary

    图  2  长江口生态系统各营养级间的物质流动

    Figure  2.  Trophic flows transmitted through aggregated trophic levels in the Yangtze Estuary ecosystem

    图  3  长江口Ecopath模型营养结构与能量通道示意

    Figure  3.  Schematic diagram of nutrient structure and energy channel of Ecopath model in the Yangtze Estuary

    表  1  长江口Ecopath模型功能组划分及主要种类组成

    Table  1.   Functional groups division and main species composition of Ecopath model in the Yangtze Estuary

    功能组组成
    龙头鱼 龙头鱼(Harpadon nehereus
    凤鲚 凤鲚(Coilia mystus
    刀鲚 刀鲚(Coilia nasus
    舌鳎 半滑舌鳎(Cynoglossus semilaevis)、焦氏舌鳎(Cynoglossus joyneri)、大鳞舌鳎(Cynoglossus macrolepidotus)、窄体舌鳎(Cynoglossus gracilis
    浮游动物食性鱼类 斑鰶(Konosirus punctatus)、鳓(Ilisha elongata)、黄鲫(Setipinna taty)、赤鼻棱鳀(Thryssa kammalensis)、银鲳(Pampus argenteus)、光泽黄颡鱼(Pelteobaggrus nitidus)、竹荚鱼(Trachurus japonicus
    底栖生物食性鱼类 丝鳍海鲇(Arius arius)、红娘鱼(Lepidotrigla microptera)、小眼绿鳍鱼(Chelidonichthys spinosus)、皮氏叫姑鱼(Johnius belangerii)、红狼牙虾虎鱼(Odontamblyopus rubicundus)、睛尾蝌蚪虾虎鱼(Lophiogobius ocellicauda)、孔虾虎鱼(Trypauchen vagina)、六丝钝尾虾虎鱼(Amblychaeturichthys hexanema)、矛尾虾虎鱼(Chaemrichthys stigmatias)、髭缟虾虎鱼(Tridentiger barbatus
    游泳生物食性鱼类 长吻(Leiocassis longirostris)、带鱼(Trichiurus lepturus)、鮟鱇(Lophiiformes)、鮸(Miichthys miiuy)、中国花鲈(Lateolabrax japonicus
    杂食性鱼类 黄鳍东方鲀(Takifugu xanthopterus)、黄姑鱼(Nibea albiflora)、灰鲳(Pampus cinereus)、大黄鱼(Larimichthys crocea)、小黄鱼(Larimichthys polyactis)、棘头梅童鱼(Collichthys lucidus)、星康吉鳗(Conger myriaster)、褐菖鲉(Sebastiscus marmoratus)、六线鱼(Hexagrammos otakii
    虾类 安氏白虾(Palaemon annandalei)、脊尾白虾(Exopalaemon carinicauda)、巨指长臂虾(Palaemon macrodactylus)、葛氏长臂虾(Palaemon gravieri)、细指长臂虾(Palaemon tenuidactylus)、细巧仿对虾(Parapenaeopsis tenella)、周氏新对虾(Joyneris shrimp)、日本沼虾(Macrobrachium nipponense)、日本鼓虾(Alpheus japonicus)、细螯虾(Leptochela gracilis)、鹰爪虾(Trachypenaeus curvirostris)、口虾蛄(Oratosquilla oratoria)、窝纹网虾蛄(Dictyosquilla foveolata
    中华绒螯蟹 中华绒螯蟹(Eriocheir sinensis
    其他蟹类 豆形拳蟹(Pyrhila pisum)、隆线强蟹(Eucrate crenata)、锯缘青蟹(Scylla serrata)、拟穴青蟹(Scylla paramamosain)、三疣梭子蟹(Portunus trituberculatus)、红星梭子蟹(Portunus sanguinolentus)、狭颚绒螯蟹(Eriochier leptognathus)、中华虎头蟹(Orithyia sinica)、细足掘沙蟹(Scalopidia spinosipes)绒毛细足蟹(Raphidopus ciliatus)、日本关公蟹(Dorippe japonica)、日本蟳(Charybdis japonica
    软体动物 长蛸(Octopus variabilis)、光滑河蓝蛤(Potamocorbula laevis)、河蚬(Corbicula fluminea)、缢蛏(Sinonovacula constricta
    多毛类 不倒翁虫(Sternaspis sculata)、背蚓虫(Notomastus latericeus)、日本刺沙蚕(Neanthes japonica)、圆锯齿吻沙蚕(Dentinephtys glabra)等
    其他底栖生物 纽虫(Nemertinea sp.)、海葵(Actiniaria)、蜾蠃蜚(Corophium sp.)等
    浮游动物 桡足类(Copepods)、枝角类(Cladocera)、糠虾类(Mysidace)、端足类(Amphipoda)等
    浮游植物 蓝藻(Cyanophyta)、绿藻(Chlorophyta)、硅藻(Bacillariophyta)等
    有机碎屑 有机碎屑(detritus)
    下载: 导出CSV

    表  2  长江口Ecopath模型功能组估算参数

    Table  2.   Functional group estimation parameters of Ecopath model of the Yangtze Estuary

    功能组营养级生物量/(t/km2)P/B)/a−1消费量/生物量(C/B)/a−1转化效率渔获量/(t/km)
    龙头鱼4.4380.1741.896.670.510
    凤鲚2.9070.5212.8626.500.025
    刀鲚2.9070.4752.8626.500.027
    舌鳎3.4210.0341.607.800.396
    浮游生物食性鱼类2.8370.2612.309.400.9310.010
    底栖生物食性鱼类3.5100.2342.509.000.901
    游泳生物食性鱼类3.7680.4781.004.500.8570.013
    杂食性鱼类3.3960.1921.607.800.9830.006
    虾类2.7000.2987.6028.900.989 0.000 1
    中华绒螯蟹2.8260.0324.0015.000.6190.002
    其他蟹类2.7070.2353.0012.000.9950.016
    软体动物2.54930.3972.509.000.4070.044
    多毛类2.10011.3206.7024.200.953
    其他底栖生物2.36529.6052.008.600.997
    浮游动物2.0004.10825.00180.000.966
    浮游植物1.00016.890180.0000.299
    有机碎屑1.00046.4230.164
      注:营养级和转化效率为模型计算参数。
    下载: 导出CSV

    表  3  长江口生态系统各营养级转化效率

    Table  3.   Transfer efficiency between different trophic levels in the Yangtze Estuary ecosystem %

    来源营养级Ⅰ营养级Ⅱ营养级Ⅲ营养级Ⅳ营养级V
    生产者15.1329.6856.6747.294
    碎屑13.9139.5216.8897.127
    总能量14.7549.6376.7377.245
    下载: 导出CSV

    表  4  2020年长江口生态系统特征参数

    Table  4.   Characteristic parameters of the Yangtze Estuary ecosystem in 2020

    参数数值
    总消耗量/〔t/(km2·a)〕1 589.50
    总输出量/〔t/(km2·a)〕2 090.64
    呼吸的总流量/〔t/(km2·a)〕949.55
    流入碎屑总流量/〔t/(km2·a)〕2502.03
    系统总流通量/〔t/(km2·a)〕7131.73
    总生产量/〔t/(km2·a)〕3362.24
    净效率(捕捞量/净初级生产量)/%0.000 03
    总净初级生产量/〔t/(km2·a)〕3 040.20
    总初级生产量/总呼吸量3.20
    净生产量/〔t/(km2·a)〕2 090.64
    总初级生产量/总生物量31.91
    总生物量/总流通量0.01
    总生物量(除去碎屑)/〔t/(km2·a)〕95.25
    连接指数(CI)0.38
    系统杂食指数(SOI)0.23
    下载: 导出CSV

    表  5  长江口流域及附近海域Ecopath模型生态学特征参数

    Table  5.   Ecological characteristic parameters in Ecopath model applied in the Yangtze Estuary and surrounding waters

    生态系统年份营养级总能量转化效率/%TPP/TRCISOI
    长江口1985—1986[42]1.000~4.52012.401.7240.4070.103
    2000[4]1.000~3.80210.205.5510.3590.179
    2004[42]1.000~4.34014.702.5270.5390.068
    2006[4]1.000~4.05810.001.8990.3710.205
    2012[4]1.000~4.0199.402.0950.3710.196
    2016[25]1.000~3.9309.301.2450.3450.321
    2020(本研究)1.000~4.4389.853.2000.3880.234
    东海[46]1997—20003.0600.3300.213
    珠江口[37]20121.000~3.2908.002.1850.3240.174
    胶州湾[45]20161.000~4.38316.352.5180.2480.116
    下载: 导出CSV
  • [1] CHRISTENSEN V, WALTERS C J, PAULY D. Ecopath with ecosim: a user's guide[EB/OL]. [2021-10-25]. http://ecobase.ecopath.org/.
    [2] POLOVINA J J. Model of a coral reef ecosystems:Ⅰ.the Ecopath model and its application to French Frigate Shoals[J]. Coral Reefs,1984,3:1-11. doi: 10.1007/BF00306135
    [3] TONG L, TANG Q S, PAULY D. A preliminary approach on mass-balance Ecopath model of the Bohai Sea[J]. Chinese Journal of Applied Ecology,2000,11(3):435-440.
    [4] 韩瑞, 陈求稳, 王丽, 等.基于生态通道模型的长江口水域生态系统结构与能量流动分析[J]. 生态学报,2016,36(15):4907-4918.

    HAN R, CHEN Q W, WANG L, et al. Analysis of the ecosystem structure and energy flow of the Yangtze River Estuary and adjacent seas, based on the Ecopath model[J]. Acta Ecologica Sinica,2016,36(15):4907-4918.
    [5] 王雪辉, 杜飞雁, 邱永松, 等.大亚湾海域生态系统模型研究: Ⅰ. 能量流动模型初探[J]. 南方水产,2005,1(3):1-8.

    WANG X H, DU F Y, QIU Y S, et al. Study on the ecosystem model of Daya Bay: Ⅰ. a preliminary approach on energy flow model[J]. South China Fisheries Science,2005,1(3):1-8.
    [6] 陈作志, 邱永松, 贾晓平.北部湾生态通道模型的构建[J]. 应用生态学报,2006,17(6):1107-1111. doi: 10.3321/j.issn:1001-9332.2006.06.030

    CHEN Z Z, QIU Y S, JIA X P. Mass-balance ecopath model of Beibu Gulf ecosystem[J]. Chinese Journal of Applied Ecology,2006,17(6):1107-1111. doi: 10.3321/j.issn:1001-9332.2006.06.030
    [7] 陈作志, 邱永松, 贾晓平, 等.基于Ecopath模型的北部湾生态系统结构和功能[J]. 中国水产科学,2008,15(3):460-468. doi: 10.3321/j.issn:1005-8737.2008.03.012

    CHEN Z Z, QIU Y S, JIA X P, et al. Structure and function of Beibu Gulf ecosystem based on Ecopath model[J]. Journal of Fishery Sciences of China,2008,15(3):460-468. doi: 10.3321/j.issn:1005-8737.2008.03.012
    [8] 李云凯, 刘恩生, 王辉, 等.基于Ecopath模型的太湖生态系统结构与功能分析[J]. 应用生态学报,2014,25(7):2033-2040.

    LI Y K, LIU E S, WANG H, et al. Analysis on the ecosystem structure and function of Lake Taihu based on Ecopath model[J]. Chinese Journal of Applied Ecology,2014,25(7):2033-2040.
    [9] 刘恩生, 李云凯, 臧日伟, 等.基于Ecopath模型的巢湖生态系统结构与功能初步分析[J]. 水产学报,2014,38(3):417-425.

    LIU E S, LI Y K, ZANG R W, et al. A preliminary analysis of the ecosystem structure and functioning of Lake Chaohu based on Ecopath model[J]. Journal of Fisheries of China,2014,38(3):417-425.
    [10] 李永刚, 汪振华, 章守宇.嵊泗人工鱼礁海区生态系统能量流动模型初探[J]. 海洋渔业,2007,29(3):226-234. doi: 10.3969/j.issn.1004-2490.2007.03.006

    LI Y G, WANG Z H, ZHANG S Y. A preliminary approach on the ecosystem model of the artificial reef in Shengsi[J]. Marine Fisheries,2007,29(3):226-234. doi: 10.3969/j.issn.1004-2490.2007.03.006
    [11] 徐姗楠, 陈作志, 何培民.杭州湾北岸大型围隔海域人工生态系统的能量流动和网络分析[J]. 生态学报,2008,28(5):2065-2072. doi: 10.3321/j.issn:1000-0933.2008.05.021

    XU S N, CHEN Z Z, HE P M. Energy flux and network analysis for an artificial ecosystem of a large enclosed sea area in North Hangzhou Bay[J]. Acta Ecologica Sinica,2008,28(5):2065-2072. doi: 10.3321/j.issn:1000-0933.2008.05.021
    [12] 李海生, 王丽婧, 张泽乾, 等.长江生态环境协同治理的理论思考与实践[J]. 环境工程技术学报,2021,11(3):409-417. doi: 10.12153/j.issn.1674-991X.20210071

    LI H S, WANG L J, ZHANG Z Q, et al. Theoretical thought and practice of eco-environment synergistic management in the Yangtze River[J]. Journal of Environmental Engineering Technology,2021,11(3):409-417. doi: 10.12153/j.issn.1674-991X.20210071
    [13] 阮仁良, 韩昌来.长江流域发展对长江口水域功能开发的影响[J]. 长江流域资源与环境,2003,12(5):427-432. doi: 10.3969/j.issn.1004-8227.2003.05.007

    RUAN R L, HAN C L. Effect of development in the Yangtze Basin on the exploitation of the water function in the mouth of the Yangtze River[J]. Resources and Environment in the Yangtze Basin,2003,12(5):427-432. doi: 10.3969/j.issn.1004-8227.2003.05.007
    [14] 金显仕, 单秀娟, 郭学武, 等.长江口及其邻近海域渔业生物的群落结构特征[J]. 生态学报,2009,29(9):4761-4772. doi: 10.3321/j.issn:1000-0933.2009.09.021

    JIN X S, SHAN X J, GUO X W, et al. Community structure of fishery biology in the Yangtze River Estuary and its adjacent waters[J]. Acta Ecologica Sinica,2009,29(9):4761-4772. doi: 10.3321/j.issn:1000-0933.2009.09.021
    [15] 刘录三, 黄国鲜, 王璠, 等.长江流域水生态环境安全主要问题、形势与对策[J]. 环境科学研究,2020,33(5):1081-1090.

    LIU L S, HUANG G X, WANG F, et al. Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin[J]. Research of Environmental Sciences,2020,33(5):1081-1090.
    [16] 李从先, 杨守业, 范代读, 等.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响[J]. 第四纪研究,2004,24(5):495-500. doi: 10.3321/j.issn:1001-7410.2004.05.003

    LI C X, YANG S Y, FAN D D, et al. The change in Changjiang suspended load and its impact on the delta after completion of Three Gorges dam[J]. Quaternary Sciences,2004,24(5):495-500. doi: 10.3321/j.issn:1001-7410.2004.05.003
    [17] 线薇薇, 刘瑞玉, 罗秉征.三峡水库蓄水前长江口生态与环境[J]. 长江流域资源与环境,2004,13(2):119-123. doi: 10.3969/j.issn.1004-8227.2004.02.004

    XIAN W W, LIU R Y, LUO B Z. Environment of the Changjiang Estuary before the sluice construction in the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin,2004,13(2):119-123. doi: 10.3969/j.issn.1004-8227.2004.02.004
    [18] GULLAND J A. The fish resources of the ocean[M]. Surrey: Fishing News (Books) Ltd, 1971.
    [19] PAULY D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES Journal of Marine Science,1980,39(2):175-192. doi: 10.1093/icesjms/39.2.175
    [20] PALOMARES M L D, PAULY D. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity[J]. Marine and Freshwater Research,1998,49(5):447. doi: 10.1071/MF98015
    [21] 江红, 程和琴, 徐海根, 等.大型水母爆发对东海生态系统中上层能量平衡的影响[J]. 海洋环境科学,2010,29(1):91-95. doi: 10.3969/j.issn.1007-6336.2010.01.020

    JIANG H, CHENG H Q, XU H G, et al. Impact of large jellyfish bloom on energy balance of middle and upper ecosystem in East China Sea[J]. Marine Environmental Science,2010,29(1):91-95. doi: 10.3969/j.issn.1007-6336.2010.01.020
    [22] 李睿, 韩震, 程和琴, 等.基于ECOPATH模型的东海区生物资源能量流动规律的初步研究[J]. 资源科学,2010,32(4):600-605.

    LI R, HAN Z, CHENG H Q, et al. A preliminary study on biological resources energy flows based on the ECOPATH model in the East China Sea[J]. Resources Science,2010,32(4):600-605.
    [23] 林群, 金显仕, 张波, 等.基于营养通道模型的渤海生态系统结构十年变化比较[J]. 生态学报,2009,29(7):3613-3620. doi: 10.3321/j.issn:1000-0933.2009.07.020

    LIN Q, JIN X S, ZHANG B, et al. Comparative study on the changes of the Bohai Sea ecosystem structure based on Ecopath model between ten years[J]. Acta Ecologica Sinica,2009,29(7):3613-3620. doi: 10.3321/j.issn:1000-0933.2009.07.020
    [24] 李云凯. 东海大陆架渔业生态系统模型研究[D]. 上海: 华东师范大学, 2009.
    [25] 徐超, 王思凯, 赵峰, 等.基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业,2018,40(3):309-318. doi: 10.3969/j.issn.1004-2490.2018.03.006

    XU C, WANG S K, ZHAO F, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries,2018,40(3):309-318. doi: 10.3969/j.issn.1004-2490.2018.03.006
    [26] 林显鹏, 朱增军, 李鹏飞.东海区龙头鱼摄食习性的研究[J]. 海洋渔业,2010,32(3):290-296. doi: 10.3969/j.issn.1004-2490.2010.03.009

    LIN X P, ZHU Z J, LI P F. Feeding habits of Harpadon nehereus in the East China Sea region[J]. Marine Fisheries,2010,32(3):290-296. doi: 10.3969/j.issn.1004-2490.2010.03.009
    [27] 庄平, 罗刚, 张涛, 等.长江口水域中华鲟幼鱼与6种主要经济鱼类的食性及食物竞争[J]. 生态学报,2010,30(20):5544-5554.

    ZHUANG P, LUO G, ZHANG T, et al. Food comparison among juvenile Acipenser sinensis and other six economic fishes in the Yangtze Estuary[J]. Acta Ecologica Sinica,2010,30(20):5544-5554.
    [28] 窦硕增, 杨纪明, 陈大刚.渤海石鲽、星鲽、高眼鲽及焦氏舌鳎的食性[J]. 水产学报,1992,16(2):162-166.

    DOU S Z, YANG J M, CHEN D G. Food habits of stone flounder, spotted flounder, high-eyed flounder and red tongue sole in the Bohai Sea[J]. Journal of Fisheries of China,1992,16(2):162-166.
    [29] 刘其根, 吴杰洋, 颜克涛, 等.淀山湖光泽黄颡鱼食性研究[J]. 水产学报,2015,39(6):859-866.

    LIU Q G, WU J Y, YAN K T, et al. Feeding habits of Pelteobagrus nitidus in Dianshan Lake[J]. Journal of Fisheries of China,2015,39(6):859-866.
    [30] 彭士明, 施兆鸿, 尹飞, 等.利用碳氮稳定同位素技术分析东海银鲳食性[J]. 生态学杂志,2011,30(7):1565-1569.

    PENG S M, SHI Z H, YIN F, et al. Feeding habits of silver pomfret (Pampus argenteus) in East China Sea based on stable isotope techniques[J]. Chinese Journal of Ecology,2011,30(7):1565-1569.
    [31] 杨纪明.渤海鱼类的食性和营养级研究[J]. 现代渔业信息,2001,16(10):10-19.

    YANG J M. A study on food and trophic levels of Baohai sea fish[J]. Modern Fisheries Information,2001,16(10):10-19.
    [32] 王建锋. 长江口棘头梅童鱼食物组成与摄食习性初步研究[D]. 南京: 南京农业大学, 2015.
    [33] 徐静静, 耿智, 冯广朋, 等.长江口中华绒螯蟹雌蟹的食性和摄食强度[J]. 海洋渔业,2019,41(4):397-407. doi: 10.3969/j.issn.1004-2490.2019.04.002

    XU J J, GENG Z, FENG G P, et al. Dietary and feeding intensity of female Eriocheir sinensis in the Yangtze River Estuary during migratory period[J]. Marine Fisheries,2019,41(4):397-407. doi: 10.3969/j.issn.1004-2490.2019.04.002
    [34] 张波, 唐启升, 金显仕.东海高营养层次鱼类功能群及其主要种类[J]. 中国水产科学,2007,14(6):939-949. doi: 10.3321/j.issn:1005-8737.2007.06.009

    ZHANG B, TANG Q S, JIN X S. Functional groups of fish assemblages and their major species at high trophic level in the East China Sea[J]. Journal of Fishery Sciences of China,2007,14(6):939-949. doi: 10.3321/j.issn:1005-8737.2007.06.009
    [35] 黄孝锋, 邴旭文, 张宪中.EwE模型在评价渔业水域生态系统中的应用[J]. 水生态学杂志,2011,32(6):125-129.

    HUANG X F, BING X W, ZHANG X Z. Application of Ecopath with Ecosin model in fishery ecosystem appraisal[J]. Journal of Hydroecology,2011,32(6):125-129.
    [36] JACKSON J B C, KIRBY M X, BERGER W H, et al. Historical overfishing and the recent collapse of coastal ecosystems[J]. Science,2001,293:629-637. doi: 10.1126/science.1059199
    [37] 莫宝霖, 秦传新, 陈丕茂, 等.基于Ecopath模型的大亚湾海域生态系统结构与功能初步分析[J]. 南方水产科学,2017,13(3):9-19. doi: 10.3969/j.issn.2095-0780.2017.03.002

    MO B L, QIN C X, CHEN P M, et al. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science,2017,13(3):9-19. doi: 10.3969/j.issn.2095-0780.2017.03.002
    [38] 陈耀辉. 河口海域生态脆弱性评估方法研究: 以长江口海域为例[D]. 上海: 上海海洋大学, 2020.
    [39] ODUM E P. The strategy of ecosystem development[J]. Science,1969,164:262-270. doi: 10.1126/science.164.3877.262
    [40] ODUM E P. Fundamental of ecology[M]. Philadelphia:W. B. Sounders, 1971.
    [41] PAULY D, CHRISTENSEN V, WALTERS C. Ecopath, ecosim, and ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES Journal of Marine Science,2000,57(3):697-706. doi: 10.1006/jmsc.2000.0726
    [42] 张效嘉, 线薇微.1985—1986年长江口生态系统能流网络分析[J]. 海洋科学,2016,40(7):60-72.

    ZHANG X J, XIAN W W. Energy flow and network analysis of the Yangtze Estuary ecosystem during 1985-1986[J]. Marine Sciences,2016,40(7):60-72.
    [43] 罗秉征, 韦晟, 窦硕增.长江口鱼类食物网与营养结构的研究[J]. 海洋科学集刊,1997(1):143-153.

    LUO B Z, WEI S, DOU S Z. Study on food web and trophic structure of fish in the Yangtze River Estuary[J]. Studia Marina Sinica,1997(1):143-153.
    [44] LINDEMAN R L. The trophic-dynamic aspect of ecology[J]. Ecology,1942,23(4):399-417. doi: 10.2307/1930126
    [45] JIANG H, CHENG H Q, XU H G, et al. Trophic controls of jellyfish blooms and links with fisheries in the East China Sea[J]. Ecological Modelling,2008,212(3/4):492-503.
    [46] 马孟磊, 陈作志, 许友伟, 等.基于Ecopath模型的胶州湾生态系统结构和能量流动分析[J]. 生态学杂志,2018,37(2):462-470.

    MA M L, CHEN Z Z, XU Y W, et al. Analysis of structure and energy flow in Jiaozhou Bay ecosystem based on Ecopath model[J]. Chinese Journal of Ecology,2018,37(2):462-470. □
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  166
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 网络出版日期:  2022-04-02

目录

    /

    返回文章
    返回